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Optimality results for mid p–values

Martin T. Wells∗,1

Cornell University

Abstract: This article examines some classical optimality properties of var-
ious mid p–values. It is shown that the usual mid p–value arises naturally
via a Rao–Blackwellization argument of a certain type of mid p–value. In
2 × 2 × K contingency tables and I × J tables with ordered alternatives it is
shown that the type of alternative is crucial in the construction of an improved
evidence assessment rule. It turns out that dimension of the sufficient statis-
tic determines the amount of improvement gained by Rao–Blackwellization.
In the 2 × 2 × K contingency tables and the uniform association model it is
shown that the Cohen and Sackrowitz (1992) mid p–value can be improved. In
each of these examples, the p–values are not based only on sufficient statistics.
However, each can be shown to reduce to the usual mid p–value upon Rao–
Blackwellization. Furthermore the mid p–value can, more generally, be derived
as an optimal procedure for estimating the truth function using a UMP test.
Hence the mid p–value serves a special role as a procedure suggested by both
Neyman–Pearson and Rao–Blackwell theories as well as from a Bayesian per-
spective. Mid p–values for the matched pairs sample and logistic regression
models are also studied.

1. Introduction

To lessen the effect of conservativeness of tests for discrete data researchers often use
a mid p–value. A mid p–value equals half the probability of the observed data, plus
the probability of observing data more extreme than the data at hand. Although a
mid p–value is usually considered an ad hoc measure of evidence, Lancaster [23] and
Plackett [29] (in his discussion of [34]) both recommend it as a good compromise
between having a conservative test and using randomization on the boundary to
eliminate problems of discreteness. Unlike exact tests with the ordinary p–value, a
test using a mid p–value does not guarantee that the Type I error rate falls below
the nominal level. However, the maximum of its true Type I error is approximately
equal to the nominal level and is less conservative than many exact tests.

In this paper it is shown that the mid p–value arises quite naturally as a con-
sequence of some fundamental statistical results, namely the Neyman–Pearson
Lemma and the Rao–Blackwell Theorem. It is also demonstrated that a variety
of reasonable proposals of evidence assessment can be improved upon by using the
mid p–values. Estimators of the truth indicator function, the indicator function over
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the null hypothesis space, are considered. For example, consider K 2 × 2 tables with
common odds ratio θ. Suppose one wishes to test H0 : θ ≤ θ0 vs H1 : θ > θ0, then
the truth indicator function is I(θ ≤ θ0). The decision problem is then formulated
as finding a good estimator γ(x) of the indicator function I(θ ≤ θ0) with respect to
the loss L(I(θ ≤ θ0, γ(x)). A possible candidate for the loss function is the squared-
error loss, (I(θ ≤ θ0) − γ(x))2. The squared-error loss can be justified on Bayesian
grounds as it is a proper loss. That is, a proper loss is one such that the minimizer
of the posterior expected loss is γ(x) = P (θ ≤ θ0|X = x), the natural Bayesian
choice. A second justification for the squared-error loss is that under the loss γ(x)
will be an admissible estimator for the truth function indicator if and only if it
is admissible for estimating the posterior probability of the null hypothesis (when
the prior is unknown). This result can be established using arguments similar to
[8]. Although Bayesian arguments are used to suggest good decision procedures we
focus on frequentist properties of the decision rules.

The estimated truth approach to formulate hypothesis testing problems has been
used before. In simple settings, without nuisance parameters, the approach has
been applied to evaluate p–values in [16, 14, 17, 30, 33], and Blyth and Staudte
[5]. In more complex discrete problems Hwang and Yang [18] and [5] apply these
ideas. The estimated truth approach can be viewed more broadly as a way of
constructing conditional inference procedures. In a series of papers [19, 20, 21]
addressed the problem of developing conditional and estimated confidence theories
to provide frequentist estimates of confidence. Berger [4] compared the Bayesian
and frequentist approaches to this problem.

Interestingly, the estimated truth approach suggests a solution very much related
to the Neyman–Pearson theory. Consider the case that one is interested in mak-
ing inference for a parameter θ and the sampling model for T |θ has a monotone
likelihood ratio in T. Then the uniformly most powerful (UMP) α-level test for
H0 : θ ≤ θ0 vs H0 : θ > θ0 exists by Theorem 2 of [25, p. 78], and its critical
function has the form

ϕ(t) = 1 t > η(1.1)
= r t = η

= 0 otherwise,

where η and r are chosen such that Eθ0ϕ(T ) = α. The focus here is on the case where
T is discrete and only takes on integer values. Let U be a U(0, 1) random variable
independent of T. Then the two statistical problems based on observing T or Z =
T +U are equivalent. If we observe Z, then T = [Z], where [·] is the Gauss function,
that is [Z] denotes the largest integer less than Z. The test that rejects H0 if Z ≥ c
is a size α UMP test, where η = [c] and r = 1 − (c − [c]). The p–value for this test
is p(z) = Pθ0(Z ≥ z) where z = t+u, t, and u represent realizations of Z, T and U .
In the one-sided testing problem, p(t, u) = Pθ0(T ≥ t)+(1 − u)Pθ0(T = t). However
unlike the Neyman–Pearson theory, the estimated truth approach does not stop and
recommend the randomized p–value, which is unacceptable from a scientific point
of view. Note that since p(t, u) is not a function of the sufficient statistic only, the
estimated truth approach automatically suggests to Rao–Blackwellize it and end up
with an improved p–value, having uniformly smaller risks. Taking the expectation
with respect to U leads to the mid p–value Pθ0(T ≥ t)+ 1

2Pθ0(T = t). In the case of
2 × 2 contingency tables Hwang and Yang [18] show that the mid p–value has some
decision-theoretic optimality properties and often behaves better than the ordinary
exact p–value. In the two-sided problem one can also use a UMP randomized test
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to derive its p–value as the form p(z) = Pθ0(Z /∈ (η1(z), η2(z)), where η1(z) and
η2(z) are defined through the test. In this case, by taking an expectation with
respect to U we obtain a new “mid p–value” pE(t) =

∫ 1

0
p(t + u)du, which is the

Rao–Blackwellization of p(z| u). It is worth noting that constructing an accurate
saddlepoint approximation to a mid p–value is feasible since Z and U are continuous
and T and U are independent (see [32]).

The Rao–Blackwellization of various mid p–values is examined in Section 2. Note
that it follows from the Rao–Blackwell theorem, that the Rao–Blackwellized p–value
has a smaller risk. In particular, the 2 × 2 × K contingency table problem is studied
in Section 2.1. The p–values proposed in [10] are applied by Kim and Agresti [22] to
try to avoid conservativeness by eliminating possible tables, a form of smoothing.
It is shown that Rao–Blackwellizing a certain type of p–value used by Kim and
Agresti [22] gives a mid p–value. I × J tables are considered in Section 2.2. In the
I × J tables with ordered alternatives it is shown that the type of alternative is
crucial in the construction of the improved p–value. It turns out that dimension
of the sufficient statistic determines the amount of improvement gained by Rao–
Blackwellization. In the uniform association model (see [2]) it is shown that the [10]
mid p–value can be improved via Rao–Blackwellization. In each of these particular
examples, these p–values are not based on sufficient statistics only. However, upon
Rao–Blackwellization, each can be shown to reduce to the classical mid p–value.
Hence the mid p–value serves a special role as a procedure suggested by both
Neyman–Pearson and Rao–Blackwell theories. In Section 3 it is shown that the
good properties of the classical mid p–value in Section 2.1 are a consequence of
some general theory of estimated truth functions for UMP tests. Other models,
these include the matched pairs sample model and logistic regression are discussed
in Section 4. The final section gives some concluding remarks.

2. Rao–Blackwellization of p–values

Two particular models are studied in this section, 2 × 2 × K and I × J contingency
tables with ordered alternatives. It is shown that the Rao–Blackwellization of some
type of mid p–values lead to the classical mid p–value.

2.1. 2 × 2 × K contingency tables

As in Kim and Agresti [22], the observations and probabilities in the k–th table,
as illustrated below, are denoted by Yijk and pijk respectively, where i and j are
either 1 or 2.

Y11k Y12k Y1+k p11k p12k

Y21k Y22k Y2+k p21k p22k

Y+1k Y+2k

The plus notation in Yi+k and Y+jk denotes the sum over the index it replaces.
Hence Yi+k and Y+jk are the marginal totals in the k–th table.

In each table, assume two independent binominal distributions with the common
odds ratio

(2.1) θ =
p11k/(1 − p11k)
p12k/(1 − p12k)
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is independent of k. Under the assumption that the tables are independent, then
joint sufficient statistics are the marginal totals Y+1k, and

T (Y ) =
K∑

k=1

Y11k.(2.2)

Let t be the observed value of T . The usual mid p–value (as defined in [23]), for
testing H0 : θ ≤ θ0 vs H1 : θ > θ0 is

pmid = Pθ0(T > t | Y+1k, k = 1, . . . , K) +
1
2
Pθ0(T = t | Y+1k, k = 1, . . . , K),

where Pθ0(· | Y+1k, 1 ≤ k ≤ K) denotes the conditional probability distribution
calculated when θ = θ0. Note the conditional distribution of Y11k given Y+1k is a
hypergeometric distribution with the hypergeometric discrete probability function
hk(y11k)

hk(y11k) = P (Y11k = y11k | Y+1k = y+1k)

=
(

y1+k

y11k

) (
y2+k

y+1k − y11k

) /(
y++k

y1+k

)

for y11k satisfying max(0, y+1k − y+2k) ≤ y11k ≤ min(y1+k, y+1k). Otherwise
hk(y11k) = 0. Let h(y) =

∏
k hk(y11k), where y is the vector consisting of y11k,

1 ≤ k ≤ K. Let Z = (Z1, . . . , ZK) be the discrete random vector with the proba-
bility function h(z). Then the mid p–value can be expressed as

pmid(t) = P (T (Z) > t) +
1
2
P (T (Z) = t),(2.3)

where P denotes the probability corresponding to Z and T (Z) = Z1 + · · · + ZK .
Although (2.3) also depends on the marginal totals, we have suppressed them in
writing pmid(t). By adopting the test of Cohen and Sackrowitz [10] originally pro-
posed for I × J tables to this 2 × 2 × K model, Kim and Agresti [22] proposed

p∗(y) = P (T (Z) > t) + P (h(Z) ≤ h(y), T (Z) = t),

where y denotes the observed vector consisting of y11k, 1 ≤ k ≤ K. Obviously,
p∗ is less than the Fisher’s type procedure p

F
= P (T (Z) ≥ t) and hence is less

conservative. It is interesting to note that p∗ and p F when used for testing are
valid. For example, the test that rejects H0 if and only if p∗(y) is less than or equal
to α has type I error less than or equal to α. A mid p–value type of procedure
corresponding to p∗ as proposed by Kim and Agresti [22], is

p∗
mid(y) = P (T (Z) > t) + P (h(Z) < h(y), T (Z) = t)(2.4)

+
1
2
P (h(Z) = h(y), T (Z) = t).

How does p∗
mid compare to pmid in terms of evidence evaluation? One interesting

feature of p∗
mid is that it depends on data more than the sufficient statistic consisting

of t, the column sums, and the row sums, and it also depends on the individual
y11k, 1 ≤ k ≤ K, as well. One may wonder what is the Rao–Blackwellized version
of p∗

mid. The following theorem answers the question.
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Theorem 2.1. E(p∗
mid | T = t, y+1k, 1 ≤ k ≤ K) = pmid(t).

Proof. See the Appendix.

Hence Theorem 2.1 implies that the regular mid p–value pmid is preferred to
p∗

mid. This follows from the direct application of the Rao–Blackwell theorem which
is summarized below. We shall consider the loss function L(I(θ ∈ H0), p(X)) and
its risk function R(θ, p) = EL(I(θ ≤ θ0), p(X)).

Theorem 2.2. For each θ, assume that L(I(θ ≤ θ0), p(X)) is a convex function
in p(X). Then R(θ, pmid) ≤ R(θ, p∗

mid) for every θ. If L(I(θ ≤ θ0), ·) is strictly
convex, then the last inequality is strict. In particular,

E(pmid − I(θ ≤ θ0))2 < E(p∗
mid − I(θ ≤ θ0))2 for every θ.

Theorems 2.1 and 2.2 assume the K independent binomial models. Similar re-
sults can be established for K independent multinomial tables as well as for K
independent Poisson tables when the “odds ratio” θ in (2.1) are assumed to be
common in each table. Here odds ratios are in quotes, since in the Poisson case
the pij in (2.1) are not probabilities but are means. To establish this, only a small
change in the technical argument is needed. We condition on all the marginal totals
including row totals and column totals. The p–values in question are the same as
in (2.3) and (2.4), since in all these tables the conditional distribution of Y11k are
independent hypergeometric regardless of which model is assumed.

One may also Rao–Blackwellize p∗(y) and obtain an improved p–value, which
leads to

pmid(t) + E(h(Z)|T (Z) = t).

This follows from the proof of Theorem 2.1. Similar results can be derived for
settings relating to Theorem 2.3.

2.2. I × J contingency table with ordered alternatives

For an I × J contingency table the data is denoted as Yij , 1 ≤ i ≤ I and 1 ≤ j ≤ J
and also the cell probabilities are denoted as pij . It is assumed that Yij has a
multinomial model with parameter n =

∑
i,j Yij the total number of IJ cells and

cell probabilities pij . The testing problem is

H0 : pij = pi+p+j vs H1 : θij = log(pijp(i+1)(j+1)/pi(j+1)p(i+1)j) ≥ 0(2.5)

with strict inequality for at least one pair of (i, j). This problem has been considered
in [9, 10]. They also commented that the alternative H1 makes sense if the categories
of the contingency table are ordered. The same problem has also been studied in
[3, 15, 24, 28]. [10] suggested that the usual Fisher’s p–value is

PH0(T (Y ) ≥ t | marginal column and row totals),(2.6)

where

Sij =
∑

1≤k≤j

∑
1≤�≤j

Yk,� and T (Y ) =
J −1∑
j=1

I−1∑
i=1

Sij(Y ),(2.7)
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where Y = (Y11, . . . , YIJ) and t is the realization of T (Y ). Hence t = T (y) and
y = (y11, . . . , yIJ) is the realization of Y . Note that under H0, the conditional
probability of Y = (Y11, . . . , YIJ ) given the marginal totals Y+j = y+j and Yi+ =
yi+ has the multivariate hypergeometric probability function

h(y) =
( I∏

i=1

yi+

J∏
j=1

y+j

)/[
n!

I∏
i=1

J∏
j=1

(yij !)
]
.(2.8)

Let Z = (Z11, . . . , ZIJ) be a random vector with the probability function h(Z)
where Zi+ = yi+ and Z+j = y+j . By using this notation, (2.6) can be written as
P (T (Z) ≥ t).

Cohen and Sackrowitz [10] also came up with a less conservative p–value

P (T (Z) > t) + P (T (Z) = t, h(Z) ≤ h(y)).(2.9)

One may also consider a mid p–value modification of (2.9)

P (T (Z) > t) + P (T (Z) = t, h(Z) < h(y)) +
1
2
P (T (Z) = t, h(Z) = h(y)).(2.10)

Can one Rao–Blackwellize (2.10)? To see this, note that the sufficient statistic
for the problem under the full model (that is, under the union of H0 and H1)
is (Yij , Yi+, Y+j), 1 ≤ i ≤ I − 1 and 1 ≤ j ≤ J − 1 (see equation (2.3) of [9]).
This sufficient statistic, however, is a trivial sufficient statistic, since it is a one–one
function of any of the IJ − 1 points of Yij (note that the dimension of Yij is IJ − 1,
since

∑
Yij is fixed). Hence the Rao–Blackwellized (2.10) is equals itself and does

not lead to anything interesting.
However, we may consider a slightly modified problem by assuming θij , defined

in (2.5), to be a constant θ. This model is known as the uniform association (see
[2]). Consider testing the hypothesis

H0 : θ = 0 vs H1 : θ > 0.(2.11)

Hence H0 in (2.11) is equivalent to (2.5). Now from equation (2.3) of [9], we see
that T , Yi+, and Y+j is a sufficient statistic under the model that all θij = θ which
is now taken to be a full model. Consequently, one may Rao–Blackwellize (2.10).
The theorem below summaries the result.

Theorem 2.3. Assume the I × J uniform association model and hence θij = θ.
Then the Rao–Blackwellized estimator based on (2.10) is

pmid(t) = P (T (Z) > t) +
1
2
P (T (Z) = t),(2.12)

where T is defined by (2.7). That is, pmid(t) equals the conditional expectation of
(2.10) given the sufficient statistic consisting of T and the marginal totals.

As in Theorem 2.2, Theorem 2.3 and the Rao–Blackwell Theorem obviously
implies that pmid dominates (2.10) in estimating I(θ = θ0) with respect to a convex
loss.

3. A general theory for the mid p–value in 2 × 2 × K and I × J tables

As in Section 2, we shall use a loss function L(I(θ ≤ θ0), γ(X)). Also it is assumed
that

L(1, γ(X)) decreasing in γ(X) and L(0, γ(X)) increasing in γ(X)(3.1)
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where L(1, ·) or L(0, ·) denote L(I(θ ≤ θ0), γ(X)) when I(θ ≤ θ0) = 1 or 0, re-
spectively. Assumption (3.1) is reasonable when γ(X) is viewed as an estimator of
I(θ ≤ θ0).

We shall first consider the 2×2×K table with common “odds ratio” in Section 2,
under the three different sampling schemes: (i) Each 2 × 2 table has a multino-
mial distribution; (ii) Each table has two independent binomial random samplings;
(iii) Each table has four independently Poisson distributed random observations.
In all the cases, the conditional distributions given all the marginal totals are in-
dependent hypergeometric. In the case of a 2 × 2 × K table with common θ, the
α–level UMP unbiased test for H0 : θ ≤ θ0 vs H1 : θ > θ0 is to reject with the
probability

ϕ(T ) = 1 if T > η(3.2)
= r if T = η

= 0 otherwise,

where T is as defined in (2.2) and η is a positve integer. See, for example, [24,
p. 163], for an outline of Neyman–Pearson’s theory for this problem. Note r and
η, functions of the marginal totals, are determined so that Eθ0 [ϕ(T ) | marginal
totals] = α.

We introduce a uniform random variable U independent of T and consider a test
of this form

T + U > c,(3.3)

where c may depend on the marginal totals. This test reduces to (3.1) for η = [c]
and r = 1 − (c − [c]). Note [·] is the Gauss function previously defined just below
(1.1). Hence (3.2) is a UMP unbiased test as well. A corresponding p–value is then

pR(t, u) = Pθ0(T + U > t + u | marginal totals)
= Pθ0(T > t | marginal totals) + (1 − u)Pθ0(T = t | marginal totals),

where t and u are the realizations of T and U . If we use Rao–Blackwellization in
the above expression, we end up with an improved estimator. Hence consider

Eθ0 [pR(t, u) | T = t, marginal totals]

= Pθ0(T > t | marginal totals) +
1
2
Pθ0(T = t | marginal totals).

This expression, of course, reduces to pmid in (2.2). It turns out that the pmid not
only performs better than pR but is also optimal as stated below.

In the following theorem, we shall say an estimator p(Z) to be test–unbiased
if for every α the following test procedure is α leveled unbiased H0 if p(Z) ≤ α.
Similar to Theorem 2.3, we have the following theorem whose proof is omitted.

Theorem 3.1. Assume that the loss function L(I, p(Z)) satisfies (3.1) and L(I, ·)
is convex. Then for any test unbiased estimator p(Z),

EL(I(θ ≤ θ0), pmid(Z)) ≤ EL(I(θ ≤ θ0), p(Z)) for every θ.

Furthermore strict inequality holds in the above inequality if L(I, ·) is strictly con-
vex. In particular,

E(I(θ ≤ θ0) − pmid(Z))2 < E(I(θ ≤ θ0) − p(Z))2 for every θ.
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The above theorem is proved based on Neyman–Pearson and Rao–Blackwell the-
orems which led us to the optimal procedure, the mid p–value. The above theorem,
however, does not imply Theorem 2.2, because p∗

mid is not test–unbiased. It thus
is quite interesting that the Rao–Blackwellization of p∗

mid and the approach of the
above theorem both point to the classical mid p–value pmid.

For the I × J uniform association model, we may develop a theorem similar to
Theorem 3.1. To see this, the probability function of Yij , as in [9], is

β(θ, b, d) exp
(
θ

I−1,J −1∑
ij

Yij +
I−1∑
i=1

Yi+bi +
J −1∑
j=1

Y+jdj

)
g(y, m),

where m = (Y1+, . . . , YI+, Y+1, . . . , Y+J ) consists of the marginal totals,

b = (b1, . . . , bI),
bi = ln(PiJ/PIJ),
dj = ln(PIj/PIJ).(3.4)

Note that when θ = 0, yij , bi and dj , 1 ≤ i ≤ I, 1 ≤ j ≤ J form a complete
sufficient statistic. Hence by Theorem 3 of Lehmann (1986, p. 147), the following
randomized test with the critical function ϕ is UMP

ϕ(t) = 1 t > η(3.5)
= r t = η(3.6)
= 0 otherwise,(3.7)

where r and η, depending on m, satisfy E0[(ϕ1(T ) | m] = α.
Following the proof of Theorem 3.1, we may conclude that the following theorem

holds.

Theorem 3.2. Assume the same loss function L as in Theorem 3.1. Then for any
test unbiased estimator p(Y ),

EL(I(θ = θ0), pmid(T )) ≤ EL(I(θ = θ0), p(Y ))

for any parameter θ. Furthermore strict inequality holds in the above inequality if
L(I, ·) is strictly convex. In particular

E(I(θ = θ0) − pmid(Y ))2 < E(I(θ = θ0) − p(Y ))2 for every θ.

The above theorem holds as well if I(θ = θ0) is replaced by I(θ ≤ θ0), which
corresponds to testing H0 : θ ≤ θ0 vs H1 : θ > θ0.

One unfortunate fact, from the theoretical point of view, is that the optimal p–
value in Theorems 3.1 and 3.2 are not test unbiased. It is interesting, however, that
the criterion of estimated truth approach leads us to the discovery of some p–value
that dominates the p–value corresponding to the UMP unbiased randomized tests.
In contrast, the criterion of comparing power functions leads to the UMP unbiased
randomized test as the optimal test even though this randomized test is recognized
to be unsatisfactory from the practical and scientific point of view.

Two other advantages of the estimated truth approach are in order. First, since
the optimal solution is an improvement over randomized UMP unbiased test, it is
likely to produce p–values with type I error very close to the nominal level. This
is supported by the many numerical studies including the one by Hwang and Yang
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[18] which shows that in a 2 × 2 contingency table the mid p–value has level very
close to the nominal level. The optimal p–value derived in [5] using an estimated
truth approach slightly different from our approach has a good risk function but
fails to have a good type I error.

4. Other models

4.1. 2 × 2 matched pair sample

The model is a 2 × 2 contingency table with observations Yij satisfying the multino-
mial distribution with probabilities pij as laid out in the following tables:

Y11 Y12 Y1+ p11 p12

Y21 Y22 Y2+ p21 p22

Y+1 Y+2 N,

where the plus notation denotes the sum over the index it replaces. However, the
hypotheses to be tested are

H0 : p12 ≤ p21 vs H1 : p12 > p21.(4.1)

For a recent survey of this model and some new solutions, see [31]. Earlier this
problem was treated by McNemar [26] who proposed an asymptotic test. The UMP
unbiased test, however, is based on the conditional distribution of Y12 given Y12 +
Y21 = m, which is binomial (m, θ) where the probability

θ =
p12

p12 + p21
.

Using this notation θ, the hypotheses in (4.1) can be rewritten as

H0 : θ ≤ 1
2

vs H1 : θ >
1
2
.

The UMP unbiased test has the randomized critical function

ϕ(Y12) = 1 Y12 > η(4.2)
= r Y12 = η

= 0 otherwise,

where η and r, depending on m, are chosen so that E 1
2
(ϕ(Y12) | Y12 + Y21 = m) =

α. See [13] and [25], p. 169. The above expectation is taken with respect to the
conditional distribution of Y12 at θ = 1

2 , given Y12 + Y21 = m, namely the binomial
(m, 1

2 ) distribution.
Similar to Section 2, we may define a randomized p–value by using an inde-

pendent uniform random variable U . Hence the test that rejects if and only if
Y12 + U > c where c depends on m is UMP since it corresponds to the critical
function (4.2) with η = [c] and r = 1 − (c − [c]).

An argument similar to that as what leads to Theorem 3.1 leads to the mid
p–value

pmid = P (B > y12) +
1
2
P (B = y12)(4.3)

where B is a random variable with binomial distribution (m, 1
2 ) and y12 is the

realization of Y12. Theorem 3.1 then holds for this situation, where pmid refers to
(4.3) and I(θ ≤ θ0) is replaced by I(θ ≤ 1

2 ).
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4.2. Logistic regression

Assume that Y = (Y1, . . . , Yp)′ where Yi’s are independent binomial random obser-
vations with parameters (ni, pi). It is also assumed that pi is related to a covariate
Xi, which is a q–dimensional column vector, through the logistic model

pi =
eθ′xi

1 + eθ′xi
.

Hence the probability function of Y is

P (Y = y) =
∏

i

(
ni

yi

)
eθ′x′y

/ ∏
i

(1 + eθ′xi),(4.4)

where X ′ = (x1, . . . , xp) and hence the size of X is p × q. Obviously, the statistic
T = X ′Y = (T1, . . . , Tq)′ is a sufficient statistic. Let θ = (θ1, . . . , θq)′ and consider
the problem of testing H0 : θ1 ≤ θ0

1 vs H1 : θ1 > θ0
1 for some fixed constant θ0

1.
The conditional test against H0 is based on the conditional distribution of T1 = t1
given (T2, . . . , Tq) = (t2, . . . , tq), of which the probability function is

fθ1(t1 | t2, . . . , tq) =
c(t1, t2) exp(θ1t1)∑

τ ∈S c(τ, t2) exp(θ1u1)
,(4.5)

where S consists of all possible values of T1. See for example [11, 2] and [27].
It can be shown (as in Lehmann 1997, p. 178) that the following test with the

critical function ϕ is α–level UMP unbiased test

ϕ(T1) = 1 T1 > η(4.6)
= r T1 = η

= 0 otherwise,

where η ∈ S is a possible value of t1 and r is a number such that 0 ≤ r ≤ 1. Both
r and η depends on (t2, . . . , tq) and are chosen such that Eθ0

1
[ϕ(T1) | t2, . . . tq] = α.

Note that the expectation is taken with respect to the probability function (4.5)
with θ1 = θ0

1. The computational aspect is discussed in [27].
To derive a good p–value let τ1 < τ2 < · · · < τk be all the possible values of T1.

Introduce two other artificial numbers τ0 < τ1 and τk+1 > τk for ease of notation.
Let F be the “forward” function defined on S, i.e., F (τj) = τj+1 for 0 ≤ j ≤ k.
Now we may take an independent uniform random variable U on [0, 1] and consider
the test that rejects H0 if and only if

T1 + (F (T1) − T1)U > c,(4.7)

where assume without loss of generality that c ≤ τk+1. Define a Gauss function [·]S
with respect to S as follows

[c]S = largest τ ′
is, 1 ≤ i ≤ k + 1, such that τi < c if τ1 < c(4.8)

= τ0 if c ≤ τ1.

Test (4.7) corresponds to a critical function in (4.6) if

η = [c]S and r = 1 − c − η

F (η) − η
.(4.9)
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The proof of this is given in the Appendix. Consequently, the randomized p–value
corresponding to the UMP unbiased test can be written as

Pθ0(T1 + (F (T1) − T1)U > t1 + (F (T1) − t1)U | T2, . . . , Tq)(4.10)

where t1 and U are the realizations of T1 and U respectively. Equation (4.10) can
also be written as pR(t1, U) = P (T1(Z)+(F (T1(Z))−T1(Z))U > t1+(F (t1)−t1)U)
where Z is a random variable, independent of U , having probability function (4.5)
with θ1 = θ0

1. This is a p–value that depends on U which is not a sufficient statistic.
The conditional expectation of this p–value given the sufficient statistic equals

pmid = P (T1(Z) > t1) +
1
2
P (T1(Z) = t1),(4.11)

as established in the Appendix. One can deduce a result similar to Theorem 3.1
which states that pmid, not only dominates pR, but is also optimal.

5. Conclusion

In this paper, we derive classical mid p–values as the optimal p–values for various
models. The theory developed is based on Neyman–Pearson and Rao–Blackwell
theorems. The mid p–value has been considered to be a sound procedure based on
numerical evidence and the theory of this paper supports the claim.

Although we have worked with only one–sided hypotheses, the similar theory
can be developed for the two–sided case using Neyman–Pearson and Rao–Blackwell
theorems. However the resultant optimal p–value, called the expected p–value, does
not have an analytic closed form in general. In the situation of a 2×2 table with two
independent binomial observations with equal sample sizes, the expected p–value
reduces to a two–sided mid p–value [18]. In a superb pair of articles, Brown, Cai,
and DasGupta [6, 7] show that the equal-tailed Jeffreys prior (beta with parameters
0.5 and 0.5) interval or the binomial parameter has some additional interesting
connections to the mid p–value of Clopper-Pearson interval and does well from a
frequentist perspective.

The mid p–value serves a special role as a procedure suggested by both Neyman–
Pearson and Rao–Blackwell theories as well as from a Bayesian prospective. It seems
interesting that the mid p–value, which was considered to be ad hoc, turns out to
be theoretically well justified.

Appendix

Proof of Theorem 2.1. Comparing (2.3) and (2.4) and canceling out the first term
on both sides, it suffices to establish that the second terms

E[D(T, Y ) | T = t, Y+1k, 1 ≤ k ≤ K] =
1
2
P (T = t | Y+1k, 1 ≤ k ≤ K),

where

D(t, y) = P (h(Z) < h(y), T (Z) = t) +
1
2
P (h(Z) = h(y), T (Z) = t).

Let z1, . . . , z� be all the 2 × 2 × K tables z with marginal totals equal to that of y
and such that T (z) = t.
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We may assume without loss of generality that pi = h(zi) is nondecreasing in
i. For the ease of argument, we shall assume for now that pi is strictly increasing.
(See the remark at the end for the case that some of the pi’s are equal.) Hence

D(t, zi) = p1 + · · · + pi−1 +
1
2
pi.

To calculate the conditional expectation of D given T and the marginal totals, we
first consider P (Y = zi | marginal totals, T (Y ) = t). At first glance, the probability
depends on θ. But by sufficiency of T and marginal totals or a direct calculation,
we can establish easily that it does not depend on θ. Hence we take θ = 1 without
loss of generality. This shows that the conditional probability equals pi/

∑�
j=1 pj .

Hence,

E[D(T, Y ) | marginal totals, T (Y ) = t](A.1)

=
�∑

i=1

(
p1 + · · · + pi−1 +

1
2
pi

)
pi

/( �∑
j=1

pj

)

=
1
2

(
2

�∑
i=1

( i−1∑
j=1

pj

)
pi +

�∑
i=1

p2
i

)/( �∑
j=1

pj

)

=
1
2

( �∑
j=1

pj

)2/( �∑
j=1

pj

)

=
1
2

( �∑
j=1

pj

)

=
1
2
P (T = t|marginal totals).

Note that in the above argument we have assumed that pj is strictly increasing.
If pj is only nondecreasing, we may classify zi’s according to g groups such that
the following two statements hold. For every z in Gk, 1 ≤ k ≤ g, h(z) remains the
same. Also as K increases, the probability h(z) strictly increases for z in Gk. Define

p∗(k) =
∑

z∈Gk

h(z),

which equals h(z) times the size of Gk, because h(z) remains constant for z ∈ Gk.
After some careful thinking, (A.1) holds true if all pi is replaced by p∗

i and
∑�

i=1 is
replaced by

∑g
i=1. Hence Theorem 2.1 is established for this more general case.

Proof of Theorem 2.3. Let z1, . . . , z� be all the I × J tables such that T (zi) = t and
such that zi has the same marginal totals as y. Assume without loss of generality
that pi = h(zi) is increasing in i, where h(z) is defined in (2.8). We, however,
only prove the theorem assuming that pi is strictly increasing. The case when
pi is increasing but not strictly increasing can be proved similar to the proof of
Theorem 2.1. Now to show that the Rao–Blackwellized expression of (2.9) equals
(2.10), it suffices to show that

E[D(T, n) | m, T = t] =
1
2
P (T = t | m).
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Here m represents the marginal column and row totals (see the precise definition
in the second paragraph after the statement of Theorem 3.1). Also,

D(t, y) = P (h(Z) < h(y), T (Z) = t) +
1
2
P (h(Z) = h(y), T (Z) = t).

Now D(t, zi) = p1 + · · · + pi−1 + 1
2pi. Hence,

E[D(T, N) | m, T = t] =
�∑

i=1

(
p1 + · · · + pi−1 +

1
2
pi

)
pi

/ �∑
j=1

pj =
1
2
P (T = t| m),

where the last equation follows the same argument as in the proof of Theorem 2.1
previously given in the Appendix.

Proof of (4.9). We shall prove that (4.7) is equivalent to test (4.6) with η and γ
given in (4.9) by considering three cases: (i) τ1 < c ≤ τk+1; case (ii) c ≤ τ1 and (iii)
c > τk+1.

For case (i) τ1 < c ≤ τk+1: The condition that τ1 < c implies that η = [c]s = τj

for some j, 1 ≤ j ≤ k. When T1 > η = τj , T1 ≥ τj+1 ≥ c. Consequently (4.7)
holds with probability one, agreeing with (4.6). When T1 = η, (4.7) is equivalent to
(F (η) − η)U > c − η, which holds with probability 1 − c−η

F (η)−η . Hence H0 is rejected
with probability γ for T1 = η, agreeing with (4.6). Finally if T1 < η, then (4.7)
is equivalent to (F (T1) − T1)U > c − T1 or U > (c − T1)/(F (T1) − T1). However,

c−T1
F (T1)−T1

≥ η−T1
F (T1)−T1

≥ 1. Hence given T1 < c, the last displayed inequality holds
with zero probability, which is what is stated in (4.6). The assertion holds for case
(i).

For case (ii) c ≤ τ1: Note (4.7) always holds and H0 is always rejected using
(4.7). Also η = [c]s = τ0. Hence T1 > η and test (4.6) always rejects as well.

For case (iii), c > τk+1: Note that η = [c]s = τk+1, and consequently inequality
(4.7) can never hold leading to acceptance of H0 with probability one. Also obviously
T1 < η = τk+1 and hence (4.6) always accept H0 as well. Hence the assertion (4.9)
is established.

Proof of (4.11). Note that (4.10) equals

P (T1(Z) > t1) + P [T1(Z) = t1, (F (T1(Z) − T1(Z))U > (F (t1) − t1)U ].

When T1(Z) = t1, F (T1(z) − T1(z)) = F (t1) − t1; hence the second term of the
last displayed equation equals P (T1(Z) = t1, U > u) = P (T1(Z) = t1)(1 − u). The
conditional expectation of this expression given t1 is 1

2P (T (Z) = t1), establishing
(4.11).
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