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Determining the Optimal Control

of Singular Stochastic Processes

Using Linear Programming

Kurt Helmes1 and Richard H. Stockbridge2,∗

Humboldt-Universität zu Berlin and University of Wisconsin–Milwaukee

Abstract: This paper examines the numerical implementation of a linear pro-
gramming (LP) formulation of stochastic control problems involving singular
stochastic processes. The decision maker has the ability to influence a diffusion
process through the selection of its drift rate (a control that acts absolutely
continuously in time) and may also decide to instantaneously move the process
to some other level (a singular control). The first goal of the paper is to show
that linear programming provides a viable approach to solving singular con-
trol problems. A second goal is the determination of the absolutely continuous
control from the LP results and is intimately tied to the particular numeri-
cal implementation. The original stochastic control problem is equivalent to
an infinite-dimensional linear program in which the variables are measures on
appropriate bounded regions. The implementation method replaces the LP for-
mulation involving measures by one involving the moments of the measures.
This moment approach does not directly provide the optimal control in feed-
back form of the current state. The second goal of this paper is to show that
the feedback form of the optimal control can be obtained using sensitivity
analysis.

1. Introduction

This paper examines a linear programming (LP) formulation for the long-term
average cost of controlled stochastic processes. The processes under consideration
have singular behavior (with respect to Lebesgue measure of time) that arises either
from reflection or instantaneous jumping and which may include control decisions
at the time of jumping. The use of linear programming to reformulate long-term
average stochastic control problems began with Manne [17] in the context of a finite-
state Markov chain in discrete time. This approach has been extended to general
Markov processes in continuous time (lacking singular behavior) under a variety of
optimality criteria in [2], [15] and [20]. The extension to include singular stochastic
processes and control relies on an existence result given in [16]. In all of these LP
formulations, the variables take the form of finite or probability measures, and as
such, the problems are infinite-dimensional.
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The LP approach has provided the foundation for analysis of uncontrolled sto-
chastic processes by taking the control space to consist of a single value. Numerical
implementation relies on a finite-dimensional approximation of the LP and has been
shown to be effective in [7], [9] for exit time problems and [10] for steady-state anal-
ysis. Optimal stopping problems have also been solved using the LP methodology
(see e.g. [3], [6], [11], [19]).

The papers [6]-[11] reformulate the LP in terms of the moments of the measures
rather than in terms of the measures themselves. This reformulation must also in-
clude Hausdorff moment conditions, that is, a set of linear conditions which are
necessary and sufficient for the infinite collection of variables to be the moments
of some measure or measures on bounded regions. The finite-dimensional approxi-
mation truncates the number of moments and the Hausdorff conditions which thus
allows points to be feasible that are not the initial terms of a moment sequence. The
feasible set is therefore enlarged, implying that the optimal value of the approximat-
ing LPs provides an upper or lower bound (depending on the type of optimization)
for the true optimal value.

The LP method has had only limited success so far in identifying optimal con-
trols. Theoretically, an optimal control is obtained in relaxed feedback form from an
optimal measure by taking the conditional distribution on the control space, given
the state of the process. In practice, the selection of controls typically involves dis-
cretizing the control space (see e.g., [3], [18], [13]). This affects the reformulation by
replacing measures on the product of the state space and control space by a finite
collection of measures (one for each possible control value) on the state space alone.
One difficulty with this discretization when using the moment reformulation is that
the solution gives (pseudo-)moments of the measure corresponding to a value for
the control and it is not transparent for which state values the control is active.

The first goal of this paper is to demonstrate that an analysis of the reduced
cost coefficients associated with the non-basic variables in the LP determines an
approximate optimal control directly from the LP solution. This method is espe-
cially effective when the optimal control is of bang-bang type. The second goal
is to show that singular control problems can be solved using the LP methodol-
ogy. We consider three examples of increasing levels of complexity to illustrate the
methodology. These examples are presented in the following sections.

For a measurable space (S, Σ), M(S) denotes the collection of finite measures
on (S, Σ) and P(S) is the subcollection of probability measures on (S, Σ).

2. Modified Bounded Follower Problem

The bounded follower problem of [1] considers a controlled process X which satisfies
the stochastic differential equation

(2.1) dX(t) = u(t) dt + σ dW (t),

in which W is a standard Brownian motion process, σ > 0 is constant and u(t) is
a non-anticipative process which is required to satisfy the hard constraints u(t) ∈
[−1, 1], for all t. The objective of [1] is to minimize the long-term average second
moment of X. The paper [8] modifies this problem by constraining X to remain in
the interval [0, 1]. The constraints involve reflection at {0} and a jump mechanism at
{1}. Specifically, X is modelled as a solution of the patchwork martingale problem
[14] in which the diffusion specified in (2.1) is active in the open interval (0, 1),
X sticks at {1} for an exponential length of time (parameter λ) at which point it
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jumps to 0, and reflection occurs at {0} by restricting the domain of the generator
Af(x, u) = uf ′(x) + (σ2/2) f ′′(x) to functions f ∈ C2[0, 1] satisfying f ′(0) = 0.
The paper [8] demonstrates how to compare controls using a linear programming
formulation of the problem and indicates numerical evidence of optimality.

The current paper extends the analysis of this model in two ways. The first is to
allow instantaneous jumps when X(t−) = 1 along with the reflection at {0}. We
initially formulate the processes to be considered as a quadruplet (X, Λ, L0, N1)
which satisfies for each f ∈ C2[0, 1]

f(X(t)) −
∫ t

0

∫
[−1,1]

Af(X(s), u) Λs(du) ds −
∫ t

0

B0f(X(s)) dL0(s)

(2.2)
−

∫ t

0

B1f(X(s−)) dN1(s).

is a martingale, in which A is the generator above, Λ denotes a relaxed control
process (for each s, Λs is a distribution on [−1, 1]), B0f(x) = f ′(x), L0 denotes the
local time of X at {0}, B1f(x) = f(0) − f(x) and N1 denotes the process which
counts the number of visits of X to {1}. Note, in particular, that the reflection
of X at {0} is captured through the integral term involving B0 and so f is not
required to satisfy the boundary condition f ′(0) = 0. Also observe that the local
time process L0 and the counting process N1 increase on sets of times which are
singular with respect to Lebesgue measure of time.

The objective of the decision maker is to minimize the long-term average second
moment

(2.3) lim sup
t→∞

t−1E

[∫ t

0

X2(s) ds

]
.

This criterion does not include any cost for using the control u so one would antic-
ipate u(t) taking only the extreme values, u(t) ∈ {−1, 1}. This insight, however, is
not assumed in determining the solution.

2.1. LP Formulation based on Measures

Let (X, Λ, L0, N1) satisfy (2.2). Then for each t > 0,

E[f(X(0))] = E

[
f(X(t)) −

∫ t

0

∫
[−1,1]

Af(X(s), u) Λs(du) ds

−
∫ t

0

B0f(X(s)) dL0(s) −
∫ t

0

B1f(X(s−)) dN1(s)
]
.(2.4)

For t > 0 define the expected occupation measures (up to time t) μt on [0, 1], νt
0 on

{0} and νt
1 on {1} by, for every G ∈ B([0, 1] × [−1, 1]),

μt(G) = t−1E

[∫ t

0

∫
[−1,1]

IG(X(s), u) Λs(du) ds

]
,

νt
0({0}) = t−1E[L0(t)], and

νt
1({1}) = t−1E[N1(t)].

Since [0, 1]× [−1, 1] is compact, the collection {μt : t > 0} is relatively compact and
hence there exist limits as t → ∞. As a result, there will be corresponding limits
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of {νt
0} and {νt

1}. Dividing by t and passing to the limit in (2.4) demonstrates that
for each weak limit (μ, ν0, ν1) and for every f ∈ C2[0, 1]

(2.5)
∫

Af(x, u) μ(dx × du) +
∫

B0f(x)ν0(dx) +
∫

B1f(x) ν1(dx) = 0.

The measure μ denotes the stationary distribution of (X, Λ) on [0, 1] × [−1, 1], ν0

gives the expected long-term average amount of local time per unit of time, and ν1

is the expected long-term average number of jumps per unit of time.
Theorem 1.7 in [16] shows that for each (μ, ν0, ν1) satisfying (2.5) there exists a

stationary solution of (2.2) whose stationary distribution is given by μ and hence
its objective function value (2.3) is given by

∫
x2μ(dx× du). The relaxed control is

given in feedback form as η(X(s), ·), where η is a regular conditional distribution on
[−1, 1] satisfying μ(dx × du) = η(x, du)μ(dx × [−1, 1]). As a result, to any limiting
(μ, ν0, ν1) arising from any control process Λ there is a stationary solution having
the corresponding value. This observation indicates that optimizing over stationary
processes is equivalent to optimizing over any solutions. Hence the control problem
can be reformulated as an infinite-dimensional LP.

To simplify the expressions, for a measurable function g and a measure ν defined
on a space (S, Σ), let 〈g, ν〉 denote

∫
g dν. Then the linear programming formulation

is

LP1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Min. 〈x2, μ〉
S.t. 〈Af, μ〉 + 〈B0f, ν0〉 + 〈B1f, ν1〉 = 0, ∀f ∈ C2[0, 1],

μ ∈ P([0, 1] × [−1, 1]),
ν0 ∈ M({0}),
ν1 ∈ M({1}).

Remark. An alternate approach to the solution of this stochastic control problem is
to capture the singular behavior of the processes through restrictions on the domain
of the generator A. Specifically, taking f ∈ C2[0, 1] with f ′(0) = 0 and f(0) = f(1),
the singular terms drop out of (2.2). Reflection of the process at {0} is obtained by
requiring the first condition and the instantaneous jump by the second condition.
One is now able to solve the stochastic control problem by solving the Bellman
equation in this restricted domain. The dynamic programming approach, however,
becomes more complex for the other examples in this paper when the objective
criterion includes a cost for the jumps which are dependent on a control variable.

2.2. LP Formulation based on Moments and Control Discretization

LP1 is the basis for the numerical solution of the control problem. Instead of allow-
ing μ to be a probability measure on [0, 1] × [−1, 1], however, we discretize the set
of controls to Uk =

{
uj = j

k : j = −k, . . . , k
}

and require μ ∈ P([0, 1] × Uk). This
restriction reduces the number of feasible measures and thus provides an upper
bound on LP1’s optimal value. The discretization is naturally an approximation of
the given problem. For all cases where the optimal control is of bang-bang type, the
resulting error can, in principle, be made as small as possible by a proper choice of
the discrete subset Uk. In this example (and also the next example), the restricted
LP includes an optimal measure μ for LP1 and therefore solving the restricted LP
provides a solution to LP1.
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Define μj(·) = μ(·×{ j
k}) for j = −k, . . . , k, realizing that each μj is a subproba-

bility measure on [0, 1], with μ =
∑

j μj being a probability measure. Also note that
the “measures” ν0 and ν1 are actually point masses at {0} and {1}, respectively.

Rather than work with the measures {μj} in the LP, we reformulate the problem
again in terms of the moments, which completely determine the measures since they
have support in the compact interval [0, 1]. For each j = −k, . . . , k and for each
n ∈ N, define

(2.6) mj(n) =
∫

xn μj(dx).

Take f(x) = xn in (2.5) and abuse notation slightly by letting ν0 and ν1 denote the
masses of the measures on the endpoints. Then LP1 takes the form

LP2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Min.
∑

j mj(2)

S.t.
∑

j

[
(nuj)mj(n − 1) + n(n−1)σ2

2 mj(n − 2)
]

+ n0n−1ν0 + (0n − 1)ν1 = 0, ∀n ∈ N,∑
j mj(0) = 1,

mj(n), ν0, ν1 ≥ 0, ∀n ∈ N.

In LP2, whenever the expression 00 appears, it is to be understood to equal 1.
The variables in LP2 are supposed to be the moments of measures defined on

[0, 1]; that is, we desire to have mj(n) = 〈xn, μj〉 for some measure μj on [0, 1]. The
constraints in LP2, however, are not sufficient for {mj(n) : n ∈ N} to be moments.
Hausdorff [5] showed that necessary and sufficient conditions are provided by the
set of linear inequalities obtained from the observation that for each m,n ∈ N

(2.7)
n∑

j=0

(−1)j

(
n
j

) ∫
[0,1]

xj+m ν(dx) =
∫

[0,1]

xm(1 − x)n ν(dx) ≥ 0.

Adding (2.7) when ν = μj , j = −k, . . . , k, to the constraint requirements of LP2
provides an equivalent LP formulation for the restricted LP1.

2.3. Finite-dimensional LPs and Numerical Results

The difficulty with this modified version of LP2 is that there are an infinite number
of variables and a corresponding infinite number of constraints. To be computable,
it is necessary to approximate LP2 by a finite-dimensional linear program.

One such approximation is obtained by restricting the number of moments to a
finite collection, say n = 0, 1, . . . , M , and limiting the constraints to those involving
only the selected number of moments. A result, however, of this approximation is
that the variables {mj(n) : n = 0, . . . , M} are no longer guaranteed to correspond
to the moments of a measure μj on [0, 1]. The constraint requirements are relaxed
and hence the set of feasible “pseudo-moments” is larger; that is, the feasible set
of the approximating LP contains the zeroeth to Mth moments of the feasible
measures of the amended LP2, but it contains other points which are not the initial
terms of a moment sequence of some measure.

Now consider more carefully the constraints (2.7) when restricted to j +m ≤ M .
Each constraint defines a half-space and so the set of feasible finite sequences lies
in a convex set defined by these half-spaces. This convex set is called the Hausdorff
polytope. Helmes and Röhl [6] determine explicit formulas for the corner points of
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the Hausdorff polytope. A final modification to LP2 is therefore possible. Instead
of imposing the finite Hausdorff conditions, characterize the Hausdorff polytope
using convex combinations of the corner points. Thus the computable version of
LP2 limits the number of variables to M + 1 for each measure and only imposes
those constraints which involve these variables, and then rewrites the variables as
convex combinations of the corner points. The variables in this computable version
are the convex coefficients {λj(n) : n = 0, . . . , M ; j = −k, . . . , k}.

In addition to giving an explicit formula for the corner points, the paper [6]
proves convergence of the approximating optimal solutions to an optimal solution
of LP2 and, moreover, shows that the corner points can be identified with a measure
that is a single point mass.

Table 1 displays a selection of values of the optimal convex coefficients λj(n)
corresponding to the extreme points of the Hausdorff polytope when M = 60. Notice
that the solution only has positive weights on the corner points corresponding to
the use of drift rates {±1}, and that the weights correspond to u = −1 for the lower
indices of the extreme points, whereas the higher indices have positive weights for
u = 1. According to the results of [6], the extreme point having index n corresponds
(asymptotically) to a point mass at x = n

M . Thus Table 1 tends to indicate that the
control u = −1 is used for smaller values of x and at some point (between 40

60 and
45
60 ) the control switches to u = 1. The λj(n) values do not provide a very accurate
indication of the value of x where the switching occurs.

Sensitivity analysis of the LP can be utilized to obtain better accuracy for the
switch point. The “reduced costs” are amounts by which the cost coefficients of each
λj(n) variable must change in order for the variable to become a basic variable; that
is, should the cost coefficient change by the amount of the reduced cost for a variable
λj(n), then λj(n) would be positive and be part of the basis for the solution. Table 2
displays the reduced costs for some of the values of n. First, notice that values of
order 10−14 or 10−15 occur for those λj(n) which have positive weights. These
values should be understood to be numerically equivalent to 0, since the weights
currently in the basis do not need to have any change in their cost coefficients in
order to be basic variables.

To better distinguish the information contained in Table 2, it is helpful to scale
the values by a factor of 100 and then round the values to the nearest integer.
This scaling is displayed in Table 3. In contrast to the weights given in Table 1,
a consistent pattern emerges with scaled reduced costs that indicates switching
occurs close to index 43. Thus the control changes value from u = −1 to u = 1
when x is approximately 43

60 ≈ 0.71667.

The numerical results depend, of course, on the choice of the highest moment.
Table 4 displays the values of the optimal second moment, along with the values
of the point masses p0 and p1 at {0} and {1}, respectively, for a selection of values
of M . The exact values can be obtained (see [12]) in which the switching location
is the solution of a transcendental equation that is then used to determine the
stationary density for the optimal process and hence the exact optimal value via
integration. Numerical evaluation of the switch location yields x = 0.70846; the
resulting objective function and masses are also provided in Table 4 for comparison
purposes. Table 5 displays some significant scaled reduced costs for the case M =
1024, using a scale factor of 1000. These results indicate that the switch location
lies between x = 725

1024 ≈ 0.70801 and x = 726
1024 ≈ 0.70898.
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Table 1
Values of the weight variables λj(n), j = −3, . . . , +3; σ = 1, M = 60

index of control indices j: j corresponds to u = j/3
extreme point

n −3 −2 −1 0 1 2 3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

20 0.175441 0 0 0 0 0 0
21 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0
29 0.033439 0 0 0 0 0 0
30 0.086116 0 0 0 0 0 0
31 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0
38 0.018578 0 0 0 0 0 0
39 0.036428 0 0 0 0 0 0
40 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0.022700
47 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0.001842
51 0 0 0 0 0 0 0.009488
52 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0.004646
55 0 0 0 0 0 0 0.000624

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

3. Regime Switching Model with Jumping Costs

The second model of this paper allows for changes in the regime of the diffusion
along with control decisions to be made at the time the process hits {1}. The model
contains two coordinate processes X and Y . The process Y , which tracks the regime,
is a finite-state Markov chain having states Y = {y0, . . . , yl} and transition rates
given by a matrix Q = (qyz). As in the modified bounded follower problem, the
process X is a diffusion on the interior of (0, 1), is reflected at {0} and jumps
instantaneously when X(t−) = 1. However, the coefficients of the diffusion now
depend on the regime Y and in addition to selecting the drift rate, the decision
maker also selects between several possible control actions when X hits {1}.

Let 0 = x1 < · · · < xk1−1 < xk1 = 1 be points in the unit interval and let
V = {v1, . . . , vk1} denote the possible singular controls. For i < k1, selecting control
vi imposes an instantaneous jump to the target {xi} when the process hits {1}. The
control vk1 imposes a reflection on the process X at {1}. The absolutely continuous
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Table 2
Reduced cost coefficients for n = 31, . . . , 49; M = 60.

index of
extreme control indices j: j corresponds to u = j/3
point

n −3 −2 −1 0 1 2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
31 5.432 × 10−05 0.02854 0.05703 0.08552 0.1140 0.1425
32 0.0001720 0.02782 0.05547 0.08311 0.1108 0.1384
33 0.0003364 0.02691 0.05348 0.08006 0.1066 0.1332
34 0.0004988 0.02575 0.05100 0.07626 0.1015 0.1268
35 0.0005846 0.02425 0.04792 0.07159 0.09526 0.1189
36 0.0005203 0.02233 0.04413 0.06594 0.08775 0.1096
37 0.0002872 0.01993 0.03958 0.05923 0.07887 0.09852
38 −5.551 × 10−15 0.01717 0.03434 0.05150 0.06867 0.08584
39 −1.250 × 10−14 0.01436 0.02871 0.04307 0.05742 0.07178
40 0.0009360 0.01213 0.02333 0.03453 0.04573 0.05693
41 0.003792 0.01149 0.01918 0.02688 0.03457 0.04227
42 0.009811 0.01367 0.01753 0.02139 0.02525 0.02910
43 0.02028 0.02000 0.01972 0.01944 0.01916 0.01888
44 0.03618 0.03151 0.02683 0.02215 0.01747 0.01279
45 0.05777 0.04848 0.03920 0.02992 0.02064 0.01136
46 0.08425 0.07020 0.05616 0.04212 0.02808 0.01404
47 0.1139 0.09497 0.07604 0.05711 0.03819 0.01926
48 0.1447 0.1207 0.09679 0.07286 0.04893 0.02500
49 0.1753 0.1462 0.1171 0.08807 0.05900 0.02993

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

and singular generators of the pair process (X, Y ) are

Af(x, y, u) = ub(y)fx(x, y) + (1/2)σ2(y)fxx(x, y) +
∑
z∈Y

f(x, z)qyz,

B0f(x, y) = fx(x, y),

B1f(x, y, v) = −fx(x, y)I{vk1}(v) +
∑

i=0,...,k1−1

[f(xi, y) − f(x, y)]I{vi}(v).

As in the previous example, u is again restricted to [−1, 1] which means, in light of
the term b(y), that the decision maker is allowed to select different drift rates for
the different regimes. The model includes the jump generator

∑
z f(x, z)qyz which

implies that the regimes switch according to a Markov chain.
The processes under consideration form a sextuplet (X, Y, Λ, Ψ, L0, N1), in which

Ψ denotes a relaxed singular control process that chooses the values of v according to
some probability measure, and satisfy the requirement that for each f ∈ C2([0, 1]×
Y)

f(X(t), Y (t)) −
∫ t

0

∫
[−1,1]

Af(X(s), Y (s), u)Λs(du) ds(3.1)

−
∫ t

0

B0f(X(s), Y (s)) dL0(s)

−
∫ t

0

∫
V

B1f(X(s−)Y (s−), v)Ψs(dv) dN1(s)

is a martingale, in which Λ, �L0 and N1 are the relaxed control process, local time
process at x = 0 and counting process of visits to x = 1.
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Table 3
Scaled reduced cost coefficients for n = 30, . . . , 50; M = 60.

index of control indices j: j corresponds to u = j/3
extreme point

n −3 −2 −1 0 1 2 3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

30 0 3 6 9 12 15 17
31 0 3 6 9 11 14 17
32 0 3 5 8 11 14 17
33 0 3 5 8 11 13 16
34 0 3 5 8 10 13 15
35 0 2 5 7 10 12 14
36 0 2 4 7 9 11 13
37 0 2 4 6 8 10 12
38 0 2 3 5 7 9 10
39 0 1 2 4 6 7 9
40 0 1 2 3 5 6 7
41 0 1 2 3 3 4 5
42 1 1 2 2 3 3 3
43 2 2 2 2 2 2 2
44 4 3 3 2 2 1 1
45 6 5 4 3 2 1 0
46 8 7 7 4 3 1 0
47 11 9 8 6 4 2 0
48 14 12 10 7 5 3 0
49 18 15 12 9 6 3 0
50 21 17 14 10 7 3 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

The objective of the decision maker is to minimize the expected long-term aver-
age cost

lim sup
t→∞

t−1E

[ ∫ t

0

cabs(X(s), Y (s)) ds(3.2)

+
∫ t

0

∫
Y

csing(Y (s−), v)Ψs(dv) dN1(s)
]
,

in which for illustrative purposes cabs(x, y) = c(y)x2, where c(y) and csing(y, v)
denote the regime-dependent and/or decision-dependent coefficients for the cost
rates. We point out that the cost structure has different costs for the different pos-
sible singular actions. The cost is higher for larger control actions. In our numerical
examples, there is no cost for reflection at {1} and the cost for jumping increases
as the jump distance increases.

3.1. LP Formulation

As in Section 2.1, the stochastic control problem can be equivalently written in
terms of the stationary distribution and the expected long-term average occupation
measures at {0} and on {1} × V. The infinite-dimensional LP is

LP3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Min. 〈cabs, μ〉 + 〈csing, ν1〉
S.t. 〈Af, μ〉 + 〈B0f, ν0〉 + 〈B1f, ν1〉 = 0, ∀f ∈ C2([0, 1] × Y),

μ ∈ P([0, 1] × Y × [−1, 1]),
ν0 ∈ M({0}),
ν1 ∈ M({1} × V).
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Table 4
Objective function values and point masses as functions of M

M objective value p0 p1

16 0.10958 1.3796 0.6133
32 0.11117 1.4572 0.6377
64 0.11177 1.4640 0.6250

128 0.11193 1.5040 0.6317
256 0.11211 1.5337 0.6201
512 0.11218 1.5361 0.6276

1024 0.11225 1.5363 0.6287

exact 0.11260 1.5319 0.6194

The finite-dimensional approximation uses f(x, y) = xnI{yi}(y) in LP3, restricts
n to the set {0, . . . , M}, and employs the convex combination of the cornerpoints
to characterize the feasible points in the Hausdorff polytope.

3.2. Numerical Results

To illustrate the success of the LP method for solving the stochastic control problem
having both absolutely continuous and singular controls, we consider a particular set
of parameters. In this example, there are two regimes (Y = {0, 1}) and the decision
maker can select from three singular control actions, so k1 = 3 and V = {1, 2, 3}.
Control v = 1 requires the process X to jump to x = 0 when it hits {1}. Under
v = 2, the process jumps to x2 = 0.5, and the choice of v = 3 causes X to
be reflected at {1} so as to stay in the interval [0, 1]. The model parameters are
given in Table 6. Notice, in particular, that when y = 0 the jumping costs are
approximately the same, whereas the jumping cost to {0} in state 1 is an order
of magnitude larger than the cost for the process to be reset at x = 0.5. There is
no cost for reflecting the process in either state. The selected diffusion coefficients
and the switching rates are motivated by other studies ([21]). We also comment
that since the optimal absolutely continuous control only takes values in {±1} (as
evidenced in the previous example), we have limited our discrete choice of controls
u to the set {−1, 0, 1}.

The scaled reduced cost coefficients for M = 256 are presented in Table 7.
These numerical results indicate that the switch points for the absolutely continuous
control should be located around x = 218

256 ≈ 0.852 when y = 0 and near x = 237
256 ≈

0.926 for y = 1. Figure 1 displays, when y = 0, both the optimal u in feedback
form as a function of the value of the driving force X and the optimal choice of
singular control when X hits {1}. Similarly, Figure 2 displays the optimal values
of u and v when y = 1. Since the cost for resetting to {0} is low when y = 0, the
decision maker makes this choice, but when y = 1 the cost for such a resetting is
prohibitively expensive and the controller opts to reset X to x = 0.5. For these cost
parameters, the cost for jumping is not significant enough for the decision maker
to pick the reflection option; such choices are obtained when the costs for jumping
are larger.
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Table 5
Scaled reduced cost coefficients when M = 1024.

index of control indices j: j corresponds to u = j/3
extreme point

n −3 −2 −1 0 1 2 3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

555 0 26 52 78 104 129 155

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

717 14 16 19 21 23 25 27
718 15 17 19 21 22 24 26
719 16 17 19 20 22 24 25
720 16 17 19 20 22 23 24
721 17 18 19 20 21 23 24
722 17 18 19 20 21 22 23
723 18 19 19 20 21 21 22
724 19 19 20 20 20 21 21
725 19 20 20 20 20 20 21
726 20 20 20 20 20 20 20
727 21 20 20 20 20 19 19
728 21 21 20 20 19 19 18
729 22 21 21 20 19 18 18
730 23 22 21 20 19 18 17
731 24 22 21 20 19 17 16
732 25 23 22 20 19 17 16
733 25 24 22 20 18 17 15
734 26 24 22 20 18 16 14

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

867 239 199 160 120 80 40 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

4. Repair Model

In our final example, the regime process Y represents the state of wear of a machine
and X is a driving force for the level of deterioration. The levels of wear can be
interpreted as moving from “new” (x, y) = (0, 0) to “broken” (x, y) = (1, 1), with
several intermediate levels as well. In this framework, X can represent the fraction
of deterioration at the current level. When X reaches {1}, Y instantaneously jumps
up to the next level and X is instantaneously reset to {0}. In addition, a switching
mechanism like in the previous example randomly makes the system jump from
“newer” states to “older” states, with the implication that the rate matrix Q = (qyz)
is upper-triangular.

The decision maker influences the evolution of the paired process (X, Y ) by
choosing when to repair the machine. Thus when Y (t−) = i for 0 ≤ i < l and
X(t−) ∈ V, V a finite set of points in the open interval (0, 1), the repair policy resets
the driving process X(t) to 0 at a cost which depends on the value at which the
resetting is initiated. So the machine will be “better” after the repair but does not
become “younger”. Under this formulation, for levels of deterioration X(t) < 1 we
only allow repair to the same level of wear. Should X(t−) = 1 when Y (t−) = i < l,
the machine will be fixed, with X(t) = 0, but declared to have become “older,”
so Y (t) = i + 1. If Y (t) = l we assume that repairs are no longer possible; should
X(t−) = 1 when Y (t−) = l, the machine is declared to be “broken” and it is
instantaneously replaced by a new machine, implying that the process has value
(X(t), Y (t)) = (0, 0).
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Table 6
Model Parameters

Level Drift Diff. cabs(x, y) csing(y, v) Q

y b(y) σ(y) c(y) v = 1 v = 2 v = 3 0 1

0 1.5 0.44 1.5 0.05 0.06 0 –6.04 6.04
1 20.0 0.63 2.0 0.29 0.02 0 8.90 –8.90

Table 7
Scaled Reduced Cost Coefficients

index of Regime y = 0
extreme point control indices u = j

n −1 0 1

.

.

.
.
.
.

.

.

.
.
.
.

215 3 3 4
216 3 3 4
217 3 3 3
218 3 3 3
219 4 3 3
220 4 3 3
221 4 3 3
222 4 3 2

.

.

.
.
.
.

.

.

.
.
.
.

index of Regime y = 1
extreme point control indices u = j

n −1 0 1

.

.

.
.
.
.

.

.

.
.
.
.

233 16 20 24
234 17 20 23
235 18 20 22
236 19 20 21
237 19 20 20
238 20 20 19
239 21 20 18
240 22 20 17

.

.

.
.
.
.

.

.

.
.
.
.

The driving force X satisfies the stochastic differential equation

dX(t) = b(Y (t)) dt + σ(Y (t)) dW (t)

with X(0) = 0 and Y (0) = 0. Notice that this model does not include any explicit
control on X and that the coefficients depend on the level of wear y.

From a modelling perspective, we briefly remark that since X is a diffusion
process, the interpretation of this process as a “fraction of wear at the current
level” has the implication that the deterioration of the machine can improve. One
could replace the diffusion process by its running maximum so that the level of wear
is monotone, as long as X is included in the model as a driving force so that the
process is Markovian. Observe that the diffusion and its running maximum both
hit a level within V at the same time so the repair mechanism would remain the
same. The running maximum process increases singularly in time so would involve
an additional singular generator along with an extra component (see e.g. [11] for
a running maximum model). The model used in this section has the advantage of
simplicity.
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Fig 1. Optimal Absolutely Continuous and Singular Control Policies in Regime y = 0.

Fig 2. Optimal Absolutely Continuous and Singular Control Policies in Regime y = 1.

The generators for this repair model are

Af(x, y) = b(y)fx(x, y) + (1/2)σ2(y)fxx(x, y) +
∑
z∈Y

f(x, z)qyz,

B0f(x, y) = fx(x, y),

B1f(x, y) =
l−1∑
i=0

[f(0, y + 1) − f(x, y)]I(1,i)(x, y)

+ [f(0, 0) − f(x, y)]I(1,l)(x, y),

B2f(x, y, v) =
l−1∑
i=0

[f(0, y) − f(x, y)]I(v,i)(x, y).

A is the jump-diffusion operator for the driving force, B0 captures the reflection
of X at {0}, B1 indicates that Y increases one level when X hits {1}, but resets
when Y is at its maximum, and B2 incorporates the control decisions. For each
level i < l, the decision maker selects a position v at which repair occurs. Note that
for this example, the singular controls are choices of v ∈ V; in the most general case
V could be the whole X-state space [0, 1]. The processes under consideration make

f(X(t), Y (t)) −
∫ t

0

Af(X(s), Y (s)) ds(4.1)

−
∫ t

0

B0f(X(s), Y (s)) dL0(s)

−
∫ t

0

B1f(X(s−), Y (s−)) dN1(s)

−
∫ t

0

∫
V

B2f(X(s−), Y (s−), v) Ψs(dv) dN2(s)
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a martingale for every f ∈ C2([0, 1]×Y), in which N2 is the counting process which
counts the number of repairs.

The cost criterion in which we are interested includes the cost of repairing or
replacing the system and a cost associated with the second moment of the driving
force, though with different coefficients for the different regimes so that higher levels
of wear typically have higher costs. Let cabs(x, y) = c(y)x2 denote the running cost
related to the position x, in which c(y) allows for different cost rate factors for the
different states of wear. Also let c1(x, y) denote the cost for replacement when the
wear level is y; from the modelling, x = 1 when replacements occur. Finally, let
c2(x, y, v) denote the cost for repairs. The objective is to minimize the long-term
average cost given by

lim sup
t→∞

t−1E

[∫ t

0

cabs(X(s), Y (s)) ds(4.2)

+
∫ t

0

c1(X(s−), Y (s−)) dN1(s)

+
∫ t

0

∫
V

c2(X(s−), Y (s−), v)Ψs(dv)dN2(s)
]

.

For an example of a specific cost structure see Section 4.2.

4.1. LP Formulation

It is helpful to carefully define the occupation measures before displaying the LP
formulation. For each t > 0, define the measures (on the appropriate Borel sets)

μt(G) = t−1E

[∫ t

0

IG(X(s), Y (s)) ds

]
,

νt
0({(0, i)}) = t−1E[I{i}(Y (t))L0(t)],

νt
1({(1, i)}) = t−1E[I{i}(Y (t−))N1(t)],

νt
2(G) = t−1E

[∫ t

0

∫
V

IG(X(s−), Y (s−), v) Ψs(dv) dN2(s)
]

.

It is important to notice that though νt
2 appears to be a measure on [0, 1]×Y×V,

N2 only increases at times t such that X(t−) ∈ V. As a result, νt
2 only charges

points (x, v) on the diagonal of V×V. We can therefore simplify notation by taking
νt
2 to be a measure on Y × V.

A similar tightness argument as in Section 2.1 implies existence of weak limits
(μ, ν0, ν1, ν2) of {(μt, νt

0, ν
t
1, ν

t
2) : t > 0} as t → ∞. As a result, (4.1) being a

martingale implies

(4.3) 〈Af, μ〉 + 〈B0f, ν0〉 + 〈B1f, ν1〉 + 〈B2f, ν2〉 = 0, ∀f ∈ C2([0, 1] × Y).

Thus the equivalent infinite-dimensional LP formulation for this repair model is

LP4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min. 〈cabs, μ〉 + 〈c1, ν1〉 + 〈c2, ν2〉
S.t. 〈Af, μ〉 + 〈B0f, ν0〉 + 〈B1f, ν1〉 + 〈B2f, ν2〉 = 0,

∀f ∈ C2([0, 1] × Y),
μ ∈ P([0, 1] × Y),
ν0 ∈ M({0} × Y),
ν1 ∈ M({1} × Y),
ν2 ∈ M(Y × V).
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Table 8
Parameters for the repair model

Level Drift Diff. cabs(x, y) c1(x, y) c2(y, v) Q

y b(y) σ(y) c(y) x = 1 1 ≤ v ≤ 99 0 1 2

0 0.7 0.44 1 40 10 –3 2 1
1 0.8 0.44 2 50 20 0 –1 1
2 0.9 0.44 3 100 30 0 0 0

The finite-dimensional approximation to LP4 is obtained using the test functions
of the form f(x, y) = xnI{i}(y) in (4.3), with n = 0, . . . , M and i = 0, . . . , l.
As before, this choice of functions results in conditions on the pseudo-moments
associated with each measure (restricted to [0, 1]×{i} for each i), and the Hausdorff
polytope associated with each measure is characterized through convex coefficient
weights λi(n) on the corner points of the polytope.

4.2. Numerical Results

The numerical illustration in this section has three wear levels (y = 0, 1, 2) and
allows the possibility of repair and/or replacement from the 99 values x ∈ V =
{ n

100 : n = 1, 2, . . . , 99}. The other parameters are listed in Table 8. Since there is
no absolutely continuous control for this example, it is only necessary to look at
which locations x in each of state y = 0 and y = 1 repair occurs; recall that no
repair is possible in state y = 2 so the only singular action is replacement. The
masses of the measure ν1 on {1}×Y and the measure ν2 on Y×V are displayed in
Table 9.

Table 9
Masses of the singular measures ν1 at (1, y) and ν2 at (y, v) where v = n

100

V ∪ {1} State y

n i = 0 i = 1 i = 2

.

.

.
.
.
.

.

.

.
.
.
.

26 0 0 0
27 0 0 0
28 0.647063 0 0
29 0 0 0
30 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

42 0 0 0
43 0 0 0
44 0 0.810149 0
45 0 0 0
46 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

98 0 0 0
99 0 0 0
100 0 0 0.526191
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Notice, in particular, that repair occurs when x = 0.28 and the machine is “new”
(y = 0), and at x = 0.44 when y = 1, and that the only mass when y = 2 is when
x = 1 since repair is not allowed. The solution has a nice “cascading” structure
in that the repair location for the higher level of wear is to the right of the wear
location for the lower level, with the replacement being at the endpoint of the
highest level of wear. Thus the random shocks increase the level so that the process
is in a new position to the left of any place where singular control occurs. It should
be noted that this structure is an artifact of the particular choice of parameters in
the model; different choices of parameters lead to more complex repair policies.
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