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Absorption Time Distribution

for an Asymmetric Random Walk

S. N. Ethier1

University of Utah

Abstract: Consider the random walk on the set of nonnegative integers that
takes two steps to the left (just one step from state 1) with probability p ∈
[1/3, 1) and one step to the right with probability 1 − p. State 0 is absorbing
and the initial state is a fixed positive integer j0. Here we find the distribution
of the absorption time. The absorption time is the duration of (or the number
of coups in) the well-known Labouchere betting system. As a consequence
of this, we obtain in the fair case (p = 1/2) the asymptotic behavior of the
Labouchere bettor’s conditional expected deficit after n coups, given that the
system has not yet been completed.

1. Introduction

Fix a positive integer j0, and let {Xn}n≥0 be the random walk in Z+ with initial
state X0 = j0, one-step transition probabilities

P (j, k) :=

 p if k = (j − 2)+,
q if k = j + 1,
0 otherwise,

j ≥ 1,(1)

where 1/3 ≤ p < 1 and q := 1− p, and absorption at state 0. We are interested in
the distribution of the absorption time

N := min{n ≥ 1 : Xn = 0}.(2)

Since −2p + q ≤ 0, N is finite with probability 1. Probabilities and expectations
involving N will be subscripted to indicate their dependence on j0.

The random walk {Xn}n≥0 arises in connection with the Labouchere system
(also known as the cancellation system), one of the two or three best-known betting
systems. It was popularized by British journalist and Member of Parliament Henry
Du Pré Labouchere (1831–1912), who attributed it to French mathematician and
philosopher Marie Jean Antoine Nicolas de Caritat, Marquis de Condorcet (1743–
1794) (Thorold 1913, p. 66).

The system is applied to games of repeated coups that pay even money. The
gambler’s bet size at each coup is determined by an ordered list of positive integers
kept on his score sheet and updated after each coup. Given such a list, the gambler’s
bet size at the next coup is the sum of the extreme terms on the list. (This is the
same as the sum of the first and last terms on the list, except when there is only one
term.) Following the resolution of this bet, the list is updated as follows: After a
win, the extreme terms are cancelled. After a loss, the amount just lost is appended
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to the list as a new last term. The system is begun with an initial list, the most
popular choice for which is 1, 2, 3, 4; however, Labouchere himself used 3, 4, 5, 6, 7
(Thorold 1913, p. 66). The initial list, together with the sequence of wins and losses,
determines all bet sizes.

Notice that the sum of the terms on the list plus the gambler’s cumulative
profit remains constant in time (see Section 4 for details). Therefore, once the list
becomes empty, betting is stopped and the gambler’s cumulative profit is the sum
of the terms on the initial list. Notice also that Xn represents the length of the list
after n independent coups, each with win probability p, so N is the duration of
the system, that is, the number of coups required to complete it. Of course, we are
making the unrealistic assumptions that the gambler has unlimited resources and
that there is no maximum betting limit.

Downton (1980) found a recursive formula for the distribution of N in the case
j0 = 4. It is easy to generalize his result to arbitrary j0.

Theorem 1 (Downton). With ln := d(2n + 1 − j0)/3e+ for all n ≥ 0, define a
modified Pascal triangle (depending on j0) recursively by c(0, l) := δ0,l, where δ0,l

is the Kronecker delta, and1

c(n, l) :=
{

c(n− 1, l − 1) + c(n− 1, l) if ln ≤ l ≤ n,
0 otherwise,

(3)

for all n ≥ 1. Then

Pj0(N = n) = c(n− 1, ln−1)pn−ln−1qln−1(4)

if n ≥ b(j0 + 1)/2c and (n + j0 − 1)/3 /∈ Z, and Pj0(N = n) = 0 otherwise.

Proof. Let us redefine c(n, l) to be the number of the
(
n
l

)
permutations of l losses

and n− l wins for which the Labouchere bettor has not yet completed the system.
For c(n, l) to be positive, we must have 0 ≤ l ≤ n and j0 + l − 2(n− l) ≥ 1, hence
ln ≤ l ≤ n. To establish (3) it suffices to consider whether the nth coup results in a
loss or a win. Then (4) follows by noting that, if N = n, then the first n− 1 coups
must have ln−1 losses (the minimal number) and n − 1 − ln−1 wins, and the nth
coup must result in a win. Finally, one can check that

j0 + ln−1 − 2(n− 1− ln−1) =

 3 if n + j0 − 1 ≡ 0 (mod 3),
1 if n + j0 − 1 ≡ 1 (mod 3),
2 if n + j0 − 1 ≡ 2 (mod 3),

(5)

so the system can be completed at the nth coup if and only if (n+j0−1)/3 /∈ Z.

Downton’s theorem is useful for numerical computation. It also gives the upper
bound

Pj0(N = n) ≤
(

n− 1
ln−1

)
pn−ln−1qln−1(6)

under the conditions of (4). For example, taking j0 = 1 for convenience, Downton’s
bound gives

P1(N = 3m + 1) ≤
(

3m

m

)
pm+1q2m(7)

1There is a minor error in Downton’s formulation: He replaced n by n + 1 in the equation of
our (3) without doing so in the inequalities of our (3). His tables are nevertheless correct.
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and

P1(N = 3m + 2) ≤
(

3m + 1
m

)
pm+1q2m+1(8)

for all m ≥ 0.
As we will see in Section 2, the actual state of affairs is

P1(N = 3m + 1) =
1

2m + 1

(
3m

m

)
pm+1q2m(9)

and

P1(N = 3m + 2) =
1

m + 1

(
3m + 1

m

)
pm+1q2m+1(10)

for all m ≥ 0. Equations (9) and (10) allow us to determine (in Section 3) the
asymptotic behavior of P1(N ≥ n + 1) as n → ∞, and this leads (in Section 4)
to the asymptotic behavior of the Labouchere bettor’s conditional expected deficit
after n coups, given that the system has not yet been completed, at least if the game
is fair (p = 1/2). Of course, we do not restrict our attention to the case j0 = 1.

Downton (1980) observed that “no probability analysis specific to the [Labou-
chere] system appears to have been made.” He also remarked that “the probability
structure of the size of the bets in the system remains an unsolved problem.” More
than 25 years later, the problem is still open. The present note is a start, however,
which we hope will encourage further investigation.

2. The absorption time distribution

A direct derivation of the distribution of N is not entirely straightforward. Let
Y1, Y2, . . . be i.i.d. with P (Y1 = −2) = p and P (Y1 = 1) = q. Define N1 :=
min{n ≥ 1 : 1 + Y1 + · · · + Yn ∈ {−1, 0}}, and note that N1 is distributed as the
P1-distribution of N . With g(u) := E[uY1 ] = pu−2 + qu (u 6= 0), apply the optional
stopping theorem to the martingale Mn := u1+Y1+···+Yng(u)−n (n ≥ 0) stopped
at time N1. Using Cardano’s formula to solve the cubic equation v = 1/g(u) or
qvu3 − u2 + pv = 0, one can show that the P1-probability generating function of N
is

E1[vN ] = 2
1− cos((1/3) cos−1(1− (27/2)pq2v3))

3qv
(11)

− [1− cos((1/3) cos−1(1− (27/2)pq2v3))]2

(3qv)2

+ 3
sin2((1/3) cos−1(1− (27/2)pq2v3))

(3qv)2

for 0 < v < 1. With some difficulty this can then be written as a power series in v
(the singularity at v = 0 is removable).

Fortunately, the hard work has already been done in the combinatorics literature.
The results we need follow easily from a generalization of the ballot theorem stated
by Barbier (1887) and proved by Aeppli (1924) in his Ph.D. thesis under G. Pólya.
The ballot theorem itself is due to Bertrand (1887). See Takacs (1997) for a survey
of this topic. Let am be the number of paths, with steps (1, 0) and (0, 1) (i.e., east
and north), from (0, 0) to (2m,m) that never rise above (but may touch) the line
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y = x/2. Let bm be the number of paths, with steps (1, 0) and (0, 1), from (0, 0) to
(2m,m) that never rise above (but may touch) the line y = (x + 1)/2. Then

am =
1

2m + 1

(
3m

m

)
=

1
3m + 1

(
3m + 1

m

)
(12)

and

bm =
1

m + 1

(
3m + 1

m

)
.(13)

To find the P1-probability of the event {N = 3m+1}, notice that, for this event
to occur, the first 3m coups must result in exactly 2m losses and m wins with the
cumulative number of wins never being more than half of the cumulative number of
losses, for otherwise absorption would have occurred earlier. Finally, coup 3m + 1
must result in a win. We conclude from (12) that (9) holds for all m ≥ 0.

To find the P1-probability of the event {N = 3m+2}, notice that, for this event
to occur, the first coup must result in a loss, the next 3m coups must result in
exactly 2m losses and m wins with the cumulative number of wins never being
more than half of the cumulative number of losses (including the first one), for
otherwise absorption would have occurred earlier. Finally, coup 3m+2 must result
in a win. We conclude from (13) that (10) holds for all m ≥ 0.

Notice also that P1(N = 3m + 3) = 0 for all m ≥ 0 because of the periodicity of
the random walk.

The distribution of N for arbitrary j0 can be found recursively using the Markov
identity

Pj0(N = n + 1) = pPj0−2(N = n) + qPj0+1(N = n),(14)

or equivalently

Pj0+1(N = n) = q−1Pj0(N = n + 1)− pq−1Pj0−2(N = n),(15)

for all n ≥ 1, where P0(N = n) := 0 and P−1(N = n) := 0. The results for
j0 = 1, 2, . . . , 9 are

P1(N = 3m + 1) = ampm+1q2m

P2(N = 3m + 3) = am+1p
m+2q2m+1

P3(N = 3m + 2) = am+1p
m+2q2m

P4(N = 3m + 4) = (am+2 − am+1)pm+3q2m+1

P5(N = 3m + 3) = (am+2 − 2am+1)pm+3q2m(16)
P6(N = 3m + 5) = (am+3 − 3am+2)pm+4q2m+1

P7(N = 3m + 4) = (am+3 − 4am+2 + am+1)pm+4q2m

P8(N = 3m + 6) = (am+4 − 5am+3 + 3am+2)pm+5q2m+1

P9(N = 3m + 5) = (am+4 − 6am+3 + 6am+2)pm+5q2m

for all m ≥ 0,

P1(N = 3m + 2) = bmpm+1q2m+1

P2(N = 3m + 1) = bmpm+1q2m

P3(N = 3m + 3) = bm+1p
m+2q2m+1

P4(N = 3m + 2) = (bm+1 − bm)pm+2q2m

P5(N = 3m + 4) = (bm+2 − 2bm+1)pm+3q2m+1(17)
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P6(N = 3m + 3) = (bm+2 − 3bm+1)pm+3q2m

P7(N = 3m + 5) = (bm+3 − 4bm+2 + bm+1)pm+4q2m+1

P8(N = 3m + 4) = (bm+3 − 5bm+2 + 3bm+1)pm+4q2m

P9(N = 3m + 6) = (bm+4 − 6bm+3 + 6bm+2)pm+5q2m+1

for all m ≥ 0, and

P1(N = 3m + 3) = 0
P2(N = 3m + 2) = 0
P3(N = 3m + 4) = 0
P4(N = 3m + 3) = 0
P5(N = 3m + 5) = 0(18)
P6(N = 3m + 4) = 0
P7(N = 3m + 6) = 0
P8(N = 3m + 5) = 0
P9(N = 3m + 7) = 0

for all m ≥ 0.
From these special cases we can easily conjecture and prove the general result.

Theorem 2. For each m ≥ 0,

Pj0(N = 3m + 3bj0/2c − j0 + 2)(19)

=
dj0/3e−1∑

i=0

(−1)i

(
j0 − 1− 2i

i

)
am+bj0/2c−i

· pm+bj0/2c+1q2m+1−(j0−2bj0/2c),

Pj0(N = 3m + 3b(j0 − 1)/2c − (j0 − 1) + 2)(20)

=
dj0/3e−1∑

i=0

(−1)i

(
j0 − 1− 2i

i

)
bm+b(j0−1)/2c−i

· pm+b(j0−1)/2c+1q2m+1−{(j0−1)−2b(j0−1)/2c},

and
Pj0(N = 3m + 3b(j0 − 1)/2c − (j0 − 1) + 3) = 0.(21)

Of course, Pj0(N ≥ b(j0 + 1)/2c) = 1.

Remark. The theorem can be derived directly from the combinatorics literature
without reference to probability. The result needed is a formula of Niederhausen
(2002, middle of p. 9)2; he attributed the formula to Koroljuk (1955).

Proof. The proof of each of the equations, (19)–(21), proceeds by complete induc-
tion on j0 using (14), the case j0 = 1 having been already established (not to
mention the cases j0 = 2, 3, . . . , 9). To avoid the awkward floor and ceiling func-
tions, one can consider six cases, j0 = 3i0 + 1, j0 = 3i0 + 2, or j0 = 3i0 + 3, each
with i0 an even or odd nonnegative integer. The details are straightforward but
tedious.

2His bdc should be dde − 1.
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3. Asymptotic tail behavior

First we notice that

am

am−1
=

3m(3m− 1)(3m− 2)
m(2m)(2m + 1)

<
27
4

, m ≥ 1,(22)

bm

bm−1
=

(3m + 1)(3m)(3m− 1)
(m + 1)(2m)(2m + 1)

<
27
4

, m ≥ 1,(23)

and
lim

m→∞

am

am−1
= lim

m→∞

bm

bm−1
=

27
4

.(24)

Since a0 = b0 = 1, we obtain am < (27/4)m and bm < (27/4)m for each m ≥ 1.
More precisely, using Stirling’s formula,

am =
m + 1
3m + 1

bm ∼
√

3
4
√

π
m−3/2

(
27
4

)m

.(25)

Since p ∈ [1/3, 1), we have pq2 ≤ 4/27 with strict inequality if p > 1/3, hence

ρ :=
27
4

pq2 ≤ 1 (ρ < 1 if p > 1/3).(26)

Consequently,

P1(N = 3m + 1) = ampm+1q2m ∼
√

3 p

4
√

π
m−3/2ρm(27)

and

P1(N = 3m + 2) = bmpm+1q2m+1 ∼ 3
√

3 pq

4
√

π
m−3/2ρm.(28)

Now assume that p > 1/3. It follows that, with the convention that empty
products are 1,

P1(N ≥ 3m + 1) = P1(N = 3m + 1)
∞∑

n=0

m+n∏
l=m+1

P1(N = 3l + 1)
P1(N = 3l − 2)

(29)

+ P1(N = 3m + 2)
∞∑

n=0

m+n∏
l=m+1

P1(N = 3l + 2)
P1(N = 3l − 1)

= P1(N = 3m + 1)
∞∑

n=0

[ m+n∏
l=m+1

al

al−1

]
(pq2)n

+ P1(N = 3m + 2)
∞∑

n=0

[ m+n∏
l=m+1

bl

bl−1

]
(pq2)n

∼ P1(N = 3m + 1)
∞∑

n=0

ρn + P1(N = 3m + 2)
∞∑

n=0

ρn

∼ C1,1 m−3/2ρm,

where C1,1 :=
√

3 p(1 + 3q)/[4
√

π(1− ρ)]. Similarly,

P1(N ≥ 3m + 2) ∼ C1,2 m−3/2ρm,(30)
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where C1,2 :=
√

3 p(ρ + 3q)/[4
√

π(1− ρ)], and

P1(N ≥ 3m + 3) = P1(N ≥ 3m + 4) ∼ C1,3 m−3/2ρm,(31)

where C1,3 := ρC1,1.
We claim that the same type of asymptotic decay holds for the tail of the distri-

bution of N for arbitrary j0. Only the multiplicative constants differ.

Theorem 3. Assume that p > 1/3. As m →∞,

Pj0(N ≥ 3m + 1) ∼ Dj0,1 m−3/2ρm,(32)

Pj0(N ≥ 3m + 2) ∼ Dj0,2 m−3/2ρm,(33)

Pj0(N ≥ 3m + 3) ∼ Dj0,3 m−3/2ρm,(34)

for suitable constants Dj0,1, Dj0,2, Dj0,3 to be defined below.

Proof. Using Theorem 2 and arguing as above, we obtain

Pj0(N = 3m + 3bj0/2c − j0 + 2) ∼ Aj0m
−3/2ρm,(35)

Pj0(N = 3m + 3b(j0 − 1)/2c − (j0 − 1) + 2) ∼ Bj0m
−3/2ρm,(36)

where

Aj0 :=
√

3
4
√

π

dj0/3e−1∑
i=0

(−1)i

(
j0 − 1− 2i

i

)(
27
4

)bj0/2c−i

(37)

· pbj0/2c+1q1−(j0−2bj0/2c),

Bj0 :=
3
√

3
4
√

π

dj0/3e−1∑
i=0

(−1)i

(
j0 − 1− 2i

i

)(
27
4

)b(j0−1)/2c−i

(38)

· pb(j0−1)/2c+1q1−{(j0−1)−2b(j0−1)/2c}.

It follows that

Pj0(N ≥ 3m + b(j0 + 1)/2c) ∼ Cj0,1 m−3/2ρm,(39)

Pj0(N ≥ 3m + b(j0 + 1)/2c+ 1) ∼ Cj0,2 m−3/2ρm,(40)

Pj0(N ≥ 3m + b(j0 + 1)/2c+ 2) ∼ Cj0,3 m−3/2ρm,(41)

where

Cj0,1 := (1− ρ)−1(Aj0 + Bj0),(42)

Cj0,2 :=
{

(1− ρ)−1(ρAj0 + Bj0) if j0 is odd,
(1− ρ)−1(Aj0 + ρBj0) if j0 is even,

(43)

Cj0,3 :=
{

(1− ρ)−1(ρAj0 + ρBj0) if j0 is odd,
(1− ρ)−1(Aj0 + ρBj0) if j0 is even,

(44)

Finally, if we define

Dj0,1 := Cj0,1, Dj0,2 := Cj0,2, Dj0,3 := Cj0,3(45)

for j0 = 1, 2,

Dj0,1 := ρ−1Cj0,3, Dj0,2 := Cj0,1, Dj0,3 := Cj0,2(46)
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for j0 = 3, 4,

Dj0,1 := ρ−1Cj0,2, Dj0,2 := ρ−1Cj0,3, Dj0,3 := Cj0,1(47)

for j0 = 5, 6, and
Dj0,i := ρ−b(j0−1)/6cDj0−6b(j0−1)/6c,i(48)

for all j0 ≥ 7 and i = 1, 2, 3, then (32)–(34) hold.

It will be convenient to restate Theorem 3 in a condensed form. Let us define

Dj0(n) :=

 33/2Dj0,1 if n ≡ 0 (mod 3),
33/2ρ−1/3Dj0,2 if n ≡ 1 (mod 3),
33/2ρ−2/3Dj0,3 if n ≡ 2 (mod 3),

(49)

so that {Dj0(n)}n≥0 is a sequence that repeatedly cycles through three specific
constants.

Corollary 4. Assume that p > 1/3. As n →∞,

Pj0(N ≥ n + 1) ∼ Dj0(n)n−3/2(ρ1/3)n.(50)

Proof. By Theorem 3,

Pj0(N ≥ n + 1)(51)

∼

 Dj0,1(n/3)−3/2ρn/3 if n ≡ 0 (mod 3),
Dj0,2((n− 1)/3)−3/2ρ(n−1)/3 if n ≡ 1 (mod 3),
Dj0,3((n− 2)/3)−3/2ρ(n−2)/3 if n ≡ 2 (mod 3),

and the conclusion follows from (49).

4. Application to gambling

Recall the Labouchere system as explained in Section 1. Let ξ1, ξ2, . . . be i.i.d. with
common distribution

P (ξ1 = 1) = p and P (ξ1 = −1) = q,(52)

with ξn representing the profit per unit bet at the nth coup.
Let Bn be the amount bet at the nth coup, let Fn be the gambler’s cumulative

profit after the nth coup, and let Sn be the sum of the terms on the gambler’s list
after the nth coup. We have already noted that Fn + Sn does not depend on n.
Indeed, if 1 ≤ n ≤ N , then

Fn − Fn−1 = Bnξn and Sn − Sn−1 = −Bnξn,(53)

implying that Fn + Sn = Fn−1 + Sn−1. Since F0 = 0, it follows that

Fn = S0 − Sn, 1 ≤ n ≤ N.(54)

In particular, since p ≥ 1/3 by assumption, we have N < ∞ a.s., hence SN = 0
a.s., that is,

P (FN = S0) = 1.(55)

This equation says that, with probability 1, the gambler wins an amount equal to
the sum of the terms on the initial list. Under our unrealistic assumptions that the
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gambler has unlimited resources and that there is no maximum betting limit, the
Labouchere system is an infallible one.

Let us assume for now that 1/3 ≤ p ≤ 1/2, so that the game is fair or subfair.
It follows that {Fn∧N}n≥0 is a supermartingale. By (55), it is not the case that
E[FN ] ≤ 0 = E[F0], that is, the conclusion of the optional stopping theorem fails.
More specifically, {Fn∧N}n≥0 must fail to be uniformly integrable. But

|Fn∧N | ≤
N∑

l=1

|Fl − Fl−1| =
N∑

l=1

Bl,(56)

and in fact
|Fn∧N | ≤ max

0≤l≤N
|Fl| ≤ 2S0 + max

0≤l≤N
(−Fl),(57)

where the last inequality uses |Fl| = F+
l + F−

l = 2F+
l + (F−

l −F+
l ) ≤ 2S0 + (−Fl).

Thus, the quantities on the right sides of (56) and (57) must fail to be integrable. In
particular, the total amount bet by the Labouchere bettor has infinite expectation,
as does his maximum deficit. This surprising result is due to Grimmett and Stirzaker
(2001, Problem 12.9.15 and Solution). They also raised the question of whether the
maximum bet size has infinite expectation as well, but this question is currently
unresolved.

We return to the original assumption that 1/3 ≤ p < 1.

Theorem 5. If p = 1/2, then

−E[Fn | N ≥ n + 1] = S0{Pj0(N ≥ n + 1)−1 − 1}(58)

for all n ≥ 1. If 1/3 ≤ p < 1/2, then (58) holds with the = sign replaced by ≥. If
1/2 < p < 1, then (58) holds with the = sign replaced by ≤. In any case in which
p > 1/3, as n →∞,

S0{Pj0(N ≥ n + 1)−1 − 1} ∼ S0Dj0(n)−1n3/2(ρ−1/3)n,(59)

where Dj0(n) is as in (49).

Remark. In words, the Labouchere bettor’s conditional expected deficit after n
coups at a fair game (p = 1/2), given that the system has not yet been completed,
grows like a constant times n3/2(ρ−1/3)n, where ρ−1/3 = 25/3/3 ≈ 1.058267. This
geometric rate may be smaller than expected, but the factor n3/2 should not be
overlooked. Indeed, it dominates the factor (25/3/3)n for 2 ≤ n ≤ 128. The right
side of (58), as well as the multiplicative constant in (59), depends on the initial
list only through the sum (S0) and number (j0) of its terms.

Proof. If p = 1/2, then {Fn∧N}n≥0 is a martingale, and therefore

0 = E[F0] = E[Fn∧N ] = E[FN 1{N≤n}] + E[Fn 1{N≥n+1}],(60)

hence
−E[Fn 1{N≥n+1}] = S0{1− Pj0(N ≥ n + 1)},(61)

and the first conclusion follows from this. If p < 1/2 (resp., p > 1/2), then
{Fn∧N}n≥0 is a supermartingale (resp., submartingale), and the second = sign
in (60) is replaced by ≥ (resp., ≤).

The asymptotic result is a consequence of Corollary 4.
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For example, assume an initial list of 1, 2, 3, 4. Given that the system is still
incomplete after 128 coups, the Labouchere bettor’s conditional expected deficit
is 461,933.96 units if p = 1/2. It is at least 142,204.88 units if p = 18/37. These
figures were calculated from (58) using Theorem 2. If we apply the asymptotic
formula (59), the corresponding figures are 360,566.66 and 108,272.40, respectively.
The reason for the larger numbers in the fair case than in the subfair one is that
we are conditioning on a less likely event.
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