Subject Index

A

Aberth, 5, 194
ad hoc computability [see computability, counterexamples]
adjoint (definition), 125-126
Ahlfors, 61
analytic continuation, 60-64
analytic functions, 50-51, 59-64 [see also computability]
axioms (for computability)

- Banach space, 1, 3, 5, 11, 77-82 [Note. The axioms are used in the proof of virtually every theorem from Chapter 2 onwards. This is understood. We do not list all the pages, since such a list would grow so long that it would cease to be informative.]
- Banach space (statement), 81
- computability structure, $1,3,5,77-82$, 85-87 [Note. Again, this notion permeates the book. Only the most important references are listed.]
- computability structure (definition), 80
- Hilbert space [same as for a Banach space]

B
Banach/Mazur [see computability]
Banach space [see axioms, computability, First Main Theorem]
Banach space (definition), 8
Bishop, 4, 192, 194
Blum, 192
bounded operators, $1-2,93-94,96,123$, 128, 150-184 [see also First Main Theorem]
bounded operators (definition), 96
Bridges, 194
Brouwer, 4, 192

C
C, 8 [see also computability, Chapter 0]
$C^{n}, 8$ [see also computability]
$C^{\infty}, 8$ [see also computability]
$C_{o}, 8$ [see also computability]
Caldwell, 12, 26, 62 [see also computability]
Cauchy integral formula, 12, 60
characteristic function (definition), 8
Closed Graph Theorem (classical, noneffective), 97,108
closed operators, 93-94, 96-100 [see also First Main Theorem]
closed operators (definition), 96-97
Closure Criterion (First/Second), 98-100, 105, 108, 110, 116
CompNorm (in proof of the Second Main Theorem), 165-166
compact operators, $123,129,133,136$
comparisons (between real numbers/ rationals), $14-15,23$
Composition Property, 81
computability [For the underlying notion of computability on a Banach space, see "axioms, Banach space." The derived notions, for standard Banach spaces and related topics, are listed below. Theorems are listed elsewhere.]

- ad hoc, 5, 80, 90-92, 124, 134-142, 146-147
- analytic functions, 59-60
-Banach/Mazur, 28, 64-65
- Banach space [see axioms]

