VIII. κ -pic and Not Adding Reals

§0. Introduction

In the first section we show that we can iterate \aleph_2 -complete forcing, and \aleph_1 complete forcing which satisfy the \aleph_2 -c.c. in a strong sense.

In the second section we deal with a strong version of the \aleph_2 -c.c. called \aleph_2 pic. It is useful for proving that for CS iteration of length ω_2 of proper forcing notions, the limit still satisfies the \aleph_2 -c.c. This in turn will be used in order to get universes with $2^{\aleph_1} > 2^{\aleph_0} = \aleph_2$.

In the third section we deal again with the axioms; starting with a model of ZFC (not assuming the existence of large cardinals) we phrase the axioms we can get. There are four cases according to whether 2^{\aleph_0} is \aleph_1 or \aleph_2 , and 2^{\aleph_1} is \aleph_2 or larger [our knowledge on the case $2^{\aleph_0} \ge \aleph_3$ is slim].

In the fourth section we return to the problem of when a CS iteration of proper forcing preserves "not adding reals". We weaken "each Q_i (a P_i -name) is D-complete for some D a $(\lambda, 1, \kappa)$ -system", by replacing "each D_x is an \aleph_1 complete filter" or even just "each D_x is a filter" by "each D_x is a family of sets, the intersection of e.g. any two is nonempty". So we can deduce ZFC+CH $\nvdash \Phi^3_{\aleph_1}$. We also try to formulate the property preserved by iteration weaker than this completeness. See references in the relevant sections.