Chapter XIII E-Recursively Enumerable Degrees

Degree theory for subsets of *E*-closed structures differs markedly from the Σ_1 admissible case. On the surface the results are similar, but the modes of argument differ considerably. Post's problem once again has a positive solution, but this time without injuries and without repeated attempts to satisfy a given requirement. The presence of Moschovakis witnesses makes all the difference. Injuries do occur in the proof of Slaman's splitting theorem.

1. Regular Sets

Let \mathscr{E} be transitive and $A, B \subseteq \mathscr{E}$. The relativization of *E*-recursiveness to *B* was introduced in Section 5.XI. In essence a new scheme,

$$\{c\}^B(x_1,\ldots,x_n)=B\cap x_i \quad (c=\langle 7,n,i\rangle)$$

is added to the original six. f is partial E-recursive relative to B if $f \simeq \{e\}^B$ for some $e < \omega$. D is E-recursively enumerable in p relative to B if

$$D = \{x | \{e\}^B(x, p)\downarrow\}$$

for some e. \mathscr{E} is E-closed relative to B if

$$\{e\}^B(x) \downarrow \rightarrow \{e\}^B(x) \in \mathscr{E}$$

for all $e < \omega$ and $x \in \mathscr{E}$.

Assume \mathscr{E} is *E*-closed. A is *E*-reducible to *B* on \mathscr{E} (in symbols $A \leq_{\mathscr{E}} B$) if there exist $e < \omega$ and $p \in \mathscr{E}$ such that

- (i) $\{e\}^B(x, p)\downarrow$ for all $x \in \mathscr{E}$,
- (ii) $T_{\langle e, x, p; B \rangle} \in \mathscr{E}$ for all $x \in \mathscr{E}$, and
- (iii) $A = \hat{x} [x \in \mathscr{E} \quad \& \quad \{e\}^B (x, p) = 0].$