XIII. Large Ideals on ω_1

§0. Introduction

Here we shall start with κ e.g. supercompact, use semiproper iteration to get results like ($S \subseteq \omega_1$ stationary costationary):

- (a) ZFC + GCH + $\mathcal{P}(\omega_1)/(\mathcal{D}_{\omega_1} + S)$ is *layered* + suitable forcing axiom and note that by [FMSh:252] this implies the existence of a uniform ultrafilter on ω_1 such that $\aleph_0^{\omega_1}/D = \aleph_1$ (which is stronger than "D is not regular").
- (b) ZFC+GCH+ $\mathcal{P}(\omega_1)/(\mathcal{D}_{\omega_1}+S)$ is Levy + suitable forcing axiom.
- (c) ZFC+GCH+ $\mathcal{P}(\omega_1)/(\mathcal{D}_{\omega_1}+S)$ is Ulam + suitable forcing axiom.

where (a) Ulam means

$$(\mathcal{D}_{\omega_1} + S)^+ = \{ A \subseteq \omega_1 : A \cap S \neq \emptyset \mod \mathcal{D}_{\omega_1} \}$$

is the union of \aleph_1 , \aleph_1 -complete filters, hence on \mathbb{R} there are \aleph_1 measures such that each $A \subseteq \mathbb{R}$ is measurable for at least one measure

(b) Levy means that, as a Boolean algebra, it is isomorphic to the completion of a Boolean algebra of the Levy collapse $\text{Levy}(\aleph_0, < \aleph_2)$

(c) layered means that the Boolean algebra is $\bigcup_{\alpha < \aleph_2} B_\alpha$, where B_α are increasing, continuous, $|B_\alpha| \leq \aleph_1$, and $\operatorname{cf}(\alpha) = \aleph_1 \Rightarrow B_\alpha \ll \mathcal{P}(\omega_1)/(\mathcal{D}_{\omega_1} + S)$. We also deal with reflectiveness (see 4.3).

This chapter is a rerepresentation of [Sh:253], we shall give some history later, and now just remark that this work was done (and reclaimed) after