Chapter IV Elementary Results on IHYP_m

We have seen, in Chapter III, how admissible sets provide a tool for the study of infinitary logic by giving rise to those countable fragments which are especially well-behaved. In this chapter we begin the study of $\mathbb{HYP}_{\mathfrak{M}}$ by means of the logical tools developed in Chapter III.

1. On Set Existence

Given \mathfrak{M} we form the universe of sets $\mathbb{V}_{\mathfrak{M}}$ on \mathfrak{M} and speak glibly about arbitrary sets $a \in \mathbb{V}_{\mathfrak{M}}$. In practice, however, one seldom considers the impalpable sets of extremely high rank. There is even a feeling that these sets have a weaker claim to existence than the sets one normally encounters. Without becoming too philosophical, we want to touch here on the question: If we assume \mathfrak{M} as given, to the existence of what sets are we more or less firmly committed?

 $\mathbb{HYP}_{\mathfrak{M}}$ is the intersection of all models $\mathfrak{A}_{\mathfrak{M}}$ of \mathbb{KPU}^+ and is an admissible set above \mathfrak{M} . There appears to be a certain *ad hoc* feature to $\mathbb{HYP}_{\mathfrak{M}}$, however, since it might depend on the exact axioms of \mathbb{KPU}^+ in a sensitive way. You would expect that if you took a stronger theory than \mathbb{KPU}^+ (say throw in Power, or Infinity or Full Separation) that more sets from $\mathbb{V}_{\mathfrak{M}}$ would occur in all models of this stronger theory. That, for \mathfrak{M} countable, this cannot happen, lends considerable weight to the contension that $\mathbb{HYP}_{\mathfrak{M}}$ is here to stay.

Of the two results which follow, the second implies the first. We present them in the opposite order for expository and historical reasons.

A set $S \subseteq \mathfrak{M}$ is internal for $\mathfrak{A}_{\mathfrak{M}} = (\mathfrak{M}; A, E, ...)$ if there is an $a \in A$ such that $S = a_E = \{x \in \mathfrak{A}_{\mathfrak{M}} | x E a\}.$

1.1 Theorem. Let $\mathfrak{M} = \langle M, R_1, ..., R_l \rangle$ be a countable structure for L. Let T be a consistent theory (finitary or infinitary) which is Σ_1 on $\mathbb{HYP}_{\mathfrak{M}}$ and which has a model of the form $\mathfrak{A}_{\mathfrak{M}} = (\mathfrak{M}; A, E, ...)$. Let $S \subseteq M$ be such that S is internal for every such model of T. Then $S \in \mathbb{HYP}_{\mathfrak{M}}$.