Chapter XIX Abstract Equivalence Relations

by J. A. MAKOWSKY and D. MUNDICI

For a regular logic \mathscr{L} , let $\sim = \equiv_{\mathscr{L}}$ be the equivalence relation obtained by saying that two structures are \sim -equivalent iff they satisfy the same sentences of \mathscr{L} . The isomorphism relation \cong is automatically a refinement of \sim —that is, isomorphic structures are \sim -equivalent— \sim itself is a refinement of elementary equivalence \equiv , and \sim is preserved under both renaming and reduct. This last property simply means that upon renaming, or taking reducts of \sim -equivalent structures, we obtain \sim -equivalent structures. Furthermore, if $\mathscr{L}[\tau]$ is a set for every vocabulary τ , then the collection of equivalence classes given by \sim on Str(τ) has a cardinality. (Briefly, we say that \sim is *bounded*). This paper is mainly concerned with abstract equivalence relations \sim on $\bigcup_{\tau} \text{Str}(\tau)$, having the above-mentioned properties as well as the *Robinson property* so that for every \mathfrak{M} , \mathfrak{N} , and τ with $\tau = \tau_{\mathfrak{M}} \cap \tau_{\mathfrak{N}}$,

if
$$\mathfrak{M} \upharpoonright \tau \sim \mathfrak{N} \upharpoonright \tau$$
 then for some \mathfrak{A} ,
 $\mathfrak{M} \sim \mathfrak{A} \upharpoonright \tau_{\mathfrak{m}}$ and $\mathfrak{N} \sim \mathfrak{A} \upharpoonright \tau_{\mathfrak{m}}$.

If $\sim \equiv_{\mathscr{L}}$, then \sim has the Robinson property iff \mathscr{L} satisfies the Robinson consistency theorem. If, in addition, $\mathscr{L}[\tau]$ is a set for all τ , and if all sentences in \mathscr{L} have a finite vocabulary, then the Robinson consistency theorem holds in \mathscr{L} iff \mathscr{L} is compact and has the interpolation property (see Corollary 1.4). Every bounded equivalence relation \sim with the Robinson property satisfies the equation $\sim = \equiv_{\mathscr{L}}$ for at most one logic \mathscr{L} (see Corollary 3.4). This result can be extended to equivalence relations corresponding to compact logics (see Theorem 3.11). Moreover, we have that $\sim = \equiv_{\mathscr{L}}$ for exactly one logic \mathscr{L} iff \sim is separable by quantifiers, in the sense that whenever \mathfrak{M} and \mathfrak{N} are not \sim -equivalent, there is a quantifier Q such that \sim is a refinement of $\equiv_{\mathscr{L}(Q)}$ and $\mathfrak{M} \not\equiv_{\mathscr{L}(Q)} \mathfrak{N}$ (see (ii) of Theorem 3.10). Even if \sim is not separable by quantifiers, there is still a strongest logic \mathscr{L} such that \sim refines $\equiv_{\mathscr{L}}$. This \mathscr{L} is compact and can be written as $\mathscr{L} = \mathscr{L}\{Q \mid \sim$ is a refinement of $\equiv_{\mathscr{L}(Q)}\}$ (see Corollary 3.3 and (i) of Theorem 3.10).

The Robinson property of \mathscr{L} can also be coupled with such properties as $[\omega]$ -incompactness. Then $\equiv_{\mathscr{L}}$ will coincide with \cong below the first uncountable measurable cardinal μ_0 (see Theorem 1.7), and the infinitary logic $\mathscr{L}_{\mu_0\omega}$ can be interpreted in \mathscr{L} in some natural sense (refer to Theorem 1.12).

Some of the results in Section 1 can be extended to logics for enriched structures, such as topological, uniform, and proximity structures, as discussed in Section 2.