Chapter XV

Topological Model Theory

by M. ZIEGLER

1. Topological Structures

A (one-sorted) topological structure $\mathfrak{A} = (\mathfrak{A}, \alpha)$ with vocabulary τ consists of a τ -structure \mathfrak{A} and a topology α on A. Familiar examples are topological spaces ($\tau = \emptyset$), and topological groups and fields. Note that in general we do not assume that the relations and operations of \mathfrak{A} are compatible with α . This in contrast to Robinson [1974].

A logic for topological structures is a pair (\mathcal{L}, \models) , where $\mathcal{L}[\tau]$ is a class (of " \mathcal{L} -sentences") for each vocabulary τ and \models is a relation between topological structures and \mathcal{L} -sentences. We will now assume that the axioms of a regular logic hold for topological structures (see Examples 1.1.1 and Discussion 1.2). The relativization axiom is, of course, an exception to this general assumption. The reader should consult Section 2 for a description of the many-sorted case.

1.1. Three Logics for Topological Structures

We first consider quantification over α and the logic \mathcal{L}^t_{mon} . We say that an $\mathcal{L}^t_{mon}[\tau]$ -formula is built up from atomic $\mathcal{L}_{\omega\omega}[\tau]$ -formulas and atomic formulas

 $t \in X$.

where t is a τ -term and X a "set variable" (which ranges over α), using \neg , \wedge , \vee , $\forall x$, $\exists x$, $\forall X$, $\exists X$. The semantics are self-explanatory. A logic (for $\tau = \emptyset$) equivalent to \mathcal{L}_{mon}^t was introduced in Grzegorczyk [1951] and Henson et al. [1977].

- **1.1.1 Examples.** (i) $(A, \alpha) \models \forall X \ \forall Y (\exists x \ \exists y (x \in X \land y \in Y) \rightarrow \exists x ((x \in X \land x \in Y))) \lor (\neg x \in X \land \neg x \in Y)))$ or, more briefly, $(A, \alpha) \models \forall X, \ Y (X \neq \emptyset \land Y \neq \emptyset \rightarrow (X \cap Y \neq \emptyset \lor X \cup Y \neq \text{universe}))$ which holds iff (A, α) is connected.
 - (ii) $(A, F, \alpha) \models \forall X \exists Y \ Y = f^{-1}(X) \text{ iff } F: A \to A \text{ is continuous with respect}$
 - (iii) $(A, B, \alpha) \models \exists X \ \forall x (P(x) \leftrightarrow x \in X) \ \text{iff } B \ \text{is open, i.e., } B \in \alpha.$