16. METHODS FOR INTEGRAL OPERATORS

In this section we describe some methods of approximating an integral operator of the following kind. Let X denote either $L^2([a,b])$ or C([a,b]), and accordingly, let \widetilde{X} denote either $L^2([a,b]\times[a,b])$ or $C([a,b]\times[a,b])$; we shall denote by || || the L^2 -norm $|| ||_2$ in the first case and the supremum norm $|| ||_{\infty}$ in the second. Let $k \in \widetilde{X}$, and consider the <u>Fredholm integral operator</u> $T : X \to X$ with kernel k given by

(16.1)
$$Tx(s) = \int_{a}^{b} k(s,t)x(t)dt , x \in X , s \in [a,b] .$$

It is well known that T is a compact operator and

$$(16.2) \qquad \qquad \|\text{TII}_2 \leq \|\text{kII}_2 , \quad \|\text{TII}_{\infty} \leq (b-a)\|\text{kII}_{\infty} .$$

(cf. [L], 17.5(d).) We shall also compare the methods introduced in this section with those related to projections, as described in Section 15.

Degenerate kernel method

A kernel $k \in \widetilde{X}$ is said to be <u>degenerate</u> if

(16.3)
$$k(s,t) = \sum_{i=1}^{m} x_i(s)y_i(t) , s,t \in [a,b]$$

where x_i and y_i belong to X, i = 1, ..., m. Notice that an integral operator with a degenerate kernel is a bounded operator of finite rank. For the kernel given by (16.3), we have for $x \in X$ and $s \in [a,b]$,

285