12. FINITE DIMENSIONAL EIGENVALUE PROBLEM

This section is devoted to a review of some important methods of finding eigenelements of an operator $T : \mathbb{C}^n \to \mathbb{C}^n$. Let T be represented by the $n \times n$ matrix $[t_{i,j}]$ with respect to the standard basis e_1, \ldots, e_n of \mathbb{C}^n . We shall denote this matrix also by the letter T. Then $T^* = [\overline{t}_{i,i}] = T^H$.

Decomposition Results

Before we discuss the matrix eigenvalue problem, we describe some decompositions of a matrix. The motivation for these results comes from the following facts. If T is a <u>diagonal matrix</u> (i.e., $t_{i,j} = 0$ if $i \neq j$), then clearly the diagonal entries are the eigenvalues of T with e_1, \ldots, e_n as the corresponding eigenvectors. Next, if T is an <u>upper triangular matrix</u> (i.e., $t_{i,j} = 0$ if i > j), then again the diagonal entries are the eigenvalues of T, but for a fixed i, e_i is not an eigenvector (corresponding to $t_{i,i}$) unless $t_{i,j} = 0$ for all j > i. If T is partitioned as

(12.1)
$$T = \begin{bmatrix} T_{1,1} & T_{1,2} \\ 0 & T_{2,2} \\ k & n-k \end{bmatrix} \begin{bmatrix} k \\ n-k \end{bmatrix}$$

then the eigenvalues of T consist of the eigenvalues of $T_{1,1}$ and of $T_{2,2}$, since det(T-zI_n) = det(T_{1,1}-zI_k)det(T_{2,2}-zI_{n-k}).

Also, if U is a <u>unitary matrix</u>, (i.e., $U^{H}U = I = UU^{H}$), then the eigenvalues of T and of $U^{H}TU$ are the same; if x is an eigenvector of $U^{H}TU$ corresponding to λ , then Ux is a corresponding eigenvector of T.

208