11. ERROR BOUNDS FOR ITERATIVE REFINEMENTS

A customary way for approximating eigenelements λ, φ of $T \in BL(X)$ is to consider a nearby simpler operator T_0 , solve the eigenvalue problem

$$\mathbb{T}_0 \varphi_0 = \lambda_0 \varphi_0$$
 , $0 \neq \varphi_0 \in \mathbb{X}$, $\lambda_0 \in \mathbb{C}$,

and refine the eigenelements $\lambda_0^{}, \varphi_0^{}$ of $T_0^{}$ successively to obtain approximations of λ, φ .

In this section we develop some refinement schemes of this type when λ_0 is simple. We also show that two main iteration schemes lead to a simple eigenvalue λ of T; a region of isolation for λ from the rest of $\sigma(T)$ is also found. We conclude this section with a discussion of the power method, the inverse iteration and the Rayleigh quotient iteration.

We shall assume throughout this section that λ_0 is a simple eigenvalue of $T_0 \in BL(X)$, and φ_0 (resp., φ_0^*) is an eigenvector of T_0 (resp., T_0^*) corresponding to λ_0 (resp., $\overline{\lambda}_0$) such that $\langle \varphi_0, \varphi_0^* \rangle = 1$. Let P_0 and S_0 denote, as usual, the spectral projection and the reduced resolvent associated with T_0 and λ_0 , respectively. We let $V_0 = T - T_0$, so that $T = T_0 + V_0$, and seek an eigenvector φ of T which satisfies the same condition : $\langle \varphi, \varphi_0^* \rangle = 1$.

We recall the notations introduced in (10.16):

$$\begin{split} \eta_0 &= \, || \mathbb{V}_0 \varphi_0 || \ , \ \mathbf{p}_0 &= \, || \varphi_0^{\bigstar} || \ , \ \mathbf{s}_0 &= \, || \mathbf{S}_0 || \ , \\ \alpha_0 &= \, || \mathbb{V}_0 \mathbf{S}_0 || \ , \ \gamma_0 &= \max\{\eta_0 \mathbf{p}_0 \mathbf{s}_0 \ , \ \alpha_0\} \ . \end{split}$$

Note that if $\gamma_0 = 0$, then $\eta_0 = 0 = \alpha_0$, so that $V_0 P_0 = 0 = V_0 S_0$; this implies $V_0 = 0$. We discard this trivial case.

175