10. RAYLEICH-SCHRÖDINGER SERIES

Let λ_0 be a simple eigenvalue of $T_0 \in BL(X)$ and φ_0 be a corresponding eigenvector. For $V_0 \in BL(X)$, consider the family of operators $T(t) = T_0 + tV_0$, $t \in \mathbb{C}$. For suitable values of t, we develop an iterative procedure of obtaining an eigenvalue $\lambda(t)$ of T(t), and a corresponding eigenvector $\varphi(t)$ starting with the initial terms λ_0 and φ_0 . We give conditions on t for which this procedure is guaranteed to converge. We also discuss the question of the simplicity of $\lambda(t)$, and of its isolation from the rest of $\sigma(T(t))$. The theory of linear perturbation developed in the last section will be heavily relied on.

Since λ_0 is a simple eigenvalue of T_0 with a corresponding eigenvector φ_0 , it follows from Theorem 8.3 that there is an eigenvector φ_0^* of T_0^* corresponding to the eigenvalue $\overline{\lambda}_0$ such that $\langle \varphi_0, \varphi_0^* \rangle = 1$, and that the spectral projection P_0 associated with T_0 and λ_0 is given by

(10.1)
$$P_{0}x = \langle x, \varphi_{0}^{*} \rangle \varphi_{0} , x \in X .$$

The reduced resolvent $S^{}_{\rm O}$ associated with $T^{}_{\rm O}$ and $\lambda^{}_{\rm O}$ satisfies

(10.2)
$$S_0 = \lim_{z \to \lambda_0} R_0(z)(I-P_0) .$$

Let Γ be a curve in $\rho(T_0)$ which isolates λ_0 from the rest of $\sigma(T_0)$. Then Corollary 9.9 shows that for all t in the disk

(10.3)
$$\partial_{\Gamma} = \{ t \in \mathbb{C} : |t| < 1/\max_{z \in \Gamma} r_{\sigma}(V_{0}R_{0}(z)) \}$$

the operator T(t) has only one spectral value $\lambda(t)$ inside Γ , it is a simple eigenvalue of T(t), and $t \mapsto \lambda(t)$ is an analytic