1. ADJOINT CONSIDERATIONS

A useful way of studying a complex Banach space X and a bounded linear operator T on X is to consider the <u>adjoint space</u>

$$X^{*} = \{x^{*} : X \rightarrow \mathbb{C} \text{ , } x^{*} \text{ is conjugate linear and continuous} \}$$

of X and the *adjoint operator* T^* associated with T. In this section we develop these concepts. This is done in such a way as to make the well-known Hilbert space situation a particular case of our development.

For
$$x^* \in X^*$$
 and $x \in X$, we denote the value of x^* at x by $\langle x^*, x \rangle$.

Then we easily see that for x^{\bigstar} and y^{\bigstar} in X^{\bigstar} , x and y in X and $t\in\mathbb{C}$,

$$\langle \mathbf{x}^{*}, \mathbf{x} + \mathbf{y} \rangle = \langle \mathbf{x}^{*}, \mathbf{x} \rangle + \langle \mathbf{x}^{*}, \mathbf{y} \rangle ,$$

$$\langle \mathbf{x}^{*}, \mathbf{t} \mathbf{x} \rangle = \overline{\mathbf{t}} \langle \mathbf{x}^{*}, \mathbf{x} \rangle ,$$

$$(1.1)$$

$$\langle \mathbf{x}^{*} + \mathbf{y}^{*}, \mathbf{x} \rangle = \langle \mathbf{x}^{*}, \mathbf{x} \rangle + \langle \mathbf{y}^{*}, \mathbf{x} \rangle ,$$

$$\langle \mathbf{t} \mathbf{x}^{*}, \mathbf{x} \rangle = \mathbf{t} \langle \mathbf{x}^{*}, \mathbf{x} \rangle .$$

We say that \langle , \rangle is the <u>scalar product</u> on $X^* \times X$. For the sake of convenience, we introduce the following notation:

(1.2)
$$\langle \mathbf{x}, \mathbf{x}^{\bigstar} \rangle = \overline{\langle \mathbf{x}^{\bigstar}, \mathbf{x} \rangle}$$
, x in X and \mathbf{x}^{\bigstar} in \mathbf{X}^{\bigstar} .

For x^* in X^* , let

$$\|x^{*}\| = \sup\{|\langle x^{*}, x \rangle| : x \text{ in } X, \|x\| \leq 1\}.$$

1