1.9. Perturbation Theory

The next aspect of stability that we describe is stability of a semigroup under perturbations of its generator. Let H be the generator of a C_0 -semigroup of contractions on the Banach space \mathcal{B} and P a linear operator on \mathcal{B} . Our aim is to describe conditions on P which ensure that H + P also generates a C_0 -semigroup of contractions. In applications the perturbation P is often an unbounded operator and the notion of relatively bounded operator is useful.

Let H and P be linear operators on a Banach space. Then P is defined to be *relatively bounded* with respect to H, or H-*relatively bounded*, if the following two conditions are satisfied:

1. $D(P) \supset D(H)$

2. $\|Pa\| \leq \alpha \|a\| + \beta \|Ha\|$

for all a \in D(H) and some α , $\beta > 0$.

The greatest lower bound of the β for which this last relation is valid is called the *relative bound* of P with respect to H, or the H-bound.

The key result concerning relative bounded perturbations of generators of contraction semigroups is the following:

THEOREM 1.9.1. Let $S_t = exp\{-tH\}$ be a C_0 -semigroup of contractions on the Banach space B and assume P is H-relatively bounded with