1.4. Norm-dissipative Operators.

The Hille-Yosida theorem establishes that normdissipativity of a generator H , i.e., the condition

 $\|(I+\alpha H)a\| \ge \|a\|$, $a \in D(H)$,

for small $\alpha > 0$, is an infinitesimal reflection of contractivity of the associated semigroup. Next we discuss a reformulation of dissipativity which corresponds to a more geometric interpretation of contractivity. This reformulation is the Banach space analogue of the condition

$$Re(a, Ha) \ge 0$$
, $a \in D(H)$,

which characterizes dissipative operators H on Hilbert space.

The semigroup S is contractive if, and only if, it maps the unit sphere, $\{a ; \|a\| = 1\}$, into the unit ball, $\mathcal{B}_1 = \{a ; \|a\| \le 1\}$. Thus the change $S_t^a - a$ of an element a must be toward the interior of the ball of radius $\|a\|$. To describe this last geometric idea in a quantitative manner it is necessary to introduce the notion of a tangent functional.

An element f $_{a} \in \mathcal{B}*$ is defined to be a norm-tangent functional at a if

$$\|b\| \ge \|a\| + \operatorname{Re}(f_{a}, b-a)$$

for all $b \in \mathcal{B}$. Geometrically each such functional describes a hyperplane tangent to the graph of $b \in \mathcal{B} \mapsto \|b\| \ge 0$ at the point a. The functional f_a divides the space into two sets