THE GROUP OF INVERTIBLE ELEMENTS OF CERTAIN BANACH ALGEBRAS OF OPERATORS ON HILBERT SPACE

A.L. Carey

0. INTRODUCTION

If E denotes a real or complex Hilbert space, J a complex structure on E and \widetilde{O} a separable symmetrically normed ideal in the algebra $\mathcal{B}(E)$ of bounded operators on E then one may define a subalgebra $\mathcal{B}_{\widetilde{C}}(E)$ of $\mathcal{B}(E)$ by

$$\mathcal{B}_{\mathbf{G}}(\mathbf{E}) = \left\{ \mathbf{A} \in \mathcal{B}(\mathbf{E}) \, \middle| \, \mathbf{AJ} - \mathbf{JA} \in \mathbf{G} \right\} \,.$$

Then $\mathcal{B}_{\mathbf{G}}(\mathbf{E})$ may be normed to become a Banach algebra. The homotopy type of the group $\mathcal{G}_{\mathbf{G}}(\mathbf{E})$ of invertible elements of $\mathcal{B}_{\mathbf{G}}(\mathbf{E})$ may be determined (it is the same as that of a classifying space for a certain functor of K-theory). When $\mathcal{G} = \mathcal{G}_2$ (the Hilbert-Schmidt ideal) the orthogonal or unitary retracts of $\mathcal{G}_{\mathbf{G}}(\mathbf{E})$ have a physical interpretation in terms of automorphisms of the infinite dimensional Clifford algebra. Moreover the first K-group, for E real, $K_1 \left(\mathcal{B}_{\mathbf{G}_2}(\mathbf{E}) \right) \cong \mathbb{Z}_2$, relates to the existence of two distinct phases in the Ising model below the critical temperature and for E complex, $K_1 \left(\mathcal{B}_{\mathbf{G}_2}(\mathbf{E}) \right) \cong \mathbb{Z}$, may be interpreted in terms of the electric charge in the second quantised Dirac theory of the electron.