EXISTENCE VIA INTERIOR ESTIMATES FOR SECOND ORDER PARABOLIC EQUATIONS

John van der Hoek

In memory of a former student of J.H. Michael, the late Robin Wittwer (17th February 1954 - 26th May 1984)

1. PRELIMINARIES

Our problems will be solved on subsets of \mathbb{R}^{n+1} with $n \geq 1$. We label points x in \mathbb{R}^{n+1} by $(x, t), x \in \mathbb{R}^{n}, t \in \mathbb{R}$, the $(n+1)-t h$ component being often associated with time in physical problems. For $x=(x, t)$, we call $|x|=\left(\|x\|^{2}+|t|\right)^{\frac{1}{2}}$, the parabolic length of x, $\|x\|^{2}=\sum_{i=1}^{n} x_{i}{ }^{2}$ if $x=\left(x_{1} \ldots, x_{n}\right)$. For $X, Y \in \mathbb{R}^{n+1}, d(X, Y)=|X-Y|$ denotes the parabolic distance between X and Y. Let Ω be a domain in \mathbb{R}^{n+1}. A point X in the topological boundary $\partial \Omega$ of Ω belongs to the parabolic boundary $P \Omega$ of Ω if for some $Y \in \Omega$, there exists a continuous path connecting X and Y, along which the "time" coordinate is non-decreasing. If $X \in \Omega$, then $\alpha_{\Omega}(X)$ denotes $\inf \{d(X, Y) ; Y=(Y, \tau) \in P \Omega, \tau \leq t\}$ if X is the point (x, t).

2. LINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

Linear parabolic partial differential operators will be defined on functions u defined on domains Ω to have the following form:

$$
\operatorname{Lu}(x) \equiv \sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(x)+\sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}}(x)+c(x) u(x)-\frac{\partial u}{\partial t}(x)
$$

for $X \in \Omega, a_{i j}, b_{i}, c, \quad b e i n g r e a l$ valued, locally Hölder continuous

