EXISTENCE VIA INTERIOR ESTIMATES FOR SECOND ORDER PARABOLIC EQUATIONS

John van der Hoek

In memory of a former student of J.H. Michael, the late Robin Wittwer (17th February 1954 - 26th May 1984)

1. PRELIMINARIES

Our problems will be solved on subsets of \mathbb{R}^{n+1} with $n \ge 1$. We label points X in \mathbb{R}^{n+1} by (x,t), $x \in \mathbb{R}^n$, $t \in \mathbb{R}$, the (n+1)-th component being often associated with time in physical problems. For X = (x,t), we call $|X| = (||x||^2 + |t|)^{\frac{1}{2}}$, the parabolic length of X, $||x||^2 = \sum_{i=1}^n x_i^2$ if $x = (x_1, \dots, x_n)$. For $X, Y \in \mathbb{R}^{n+1}$, d(X, Y) = |X-Y| denotes the parabolic distance between X and Y. Let Ω be a domain in \mathbb{R}^{n+1} . A point X in the topological boundary $\partial\Omega$ of Ω belongs to the parabolic boundary $\mathcal{P}\Omega$ of Ω if for some $Y \in \Omega$, there exists a continuous path connecting X and Y, along which the "time" coordinate is non-decreasing. If $X \in \Omega$, then $d_{\Omega}(X)$ denotes $\inf\{d(X,Y); Y = (y,\tau) \in \mathcal{P}\Omega, \tau \le t\}$ if X is the point (x,t).

2. LINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

Linear parabolic partial differential operators will be defined on functions u defined on domains Ω to have the following form:

$$Lu(X) \equiv \sum_{\substack{i,j=1}}^{n} a_{ij}(X) \frac{\partial^2 u}{\partial x_i \partial x_j}(X) + \sum_{\substack{i=1\\i=1}}^{n} b_i(X) \frac{\partial u}{\partial x_i}(X) + c(X)u(X) - \frac{\partial u}{\partial t}(X)$$

for $X \in \Omega$, a_{ij} , b_i , c, being real valued, locally Hölder continuous

221