A REMARK ON FULLY NONLINEAR, CONCAVE ELLIPTIC EQUATIONS

Friedmar Schulz

0. INTRODUCTION AND STATEMENT OF THE RESULT

In this note we shall be concerned with fully nonlinear elliptic equations of second order of the form

$$
\begin{equation*}
E\left(D^{2} u\right)=g(x) \tag{1}
\end{equation*}
$$

for solutions $u(x) \in C^{4}(\Omega)$, defined in an open subset Ω of $\mathbb{R}^{n}(n \geqslant 2)$. Here $F \in C^{2}\left(\mathbb{R}^{n \times n}\right)$ and $g \in C^{2}(\Omega)$, with $\mathbb{R}^{n \times n}$ denoting the space of symmetric $n \times n$ matrices $r=\left[r_{i j}\right]$. We shall impose the following assumptions:
(i) F is uniformly elliptic for u, that is, there exist positive constants λ, Λ such that

$$
\lambda|\xi|^{2} \leqslant F_{r_{i j}}\left(D^{2} u\right) \xi_{i} \xi_{j} \leqslant \Lambda|\xi|^{2}
$$

for all $\xi, \in \mathbb{R}^{n}$.
(ii) \vec{F} is a concave function on some convex set containing the range of $D^{2} u$, so that

$$
F_{r_{i j} r_{k l}} \eta_{i j} \eta_{k l} \leqslant 0
$$

for all $\eta=\left[\eta_{i j}\right] \in \mathbb{R}^{n \times n}$.
(iii) In addition

$$
|g|_{2 ; \Omega} \leqslant k, \quad|u|_{2 ; \Omega} \leqslant M
$$

for some constants K, M.

