FLOW BY MEAN CURVATURE OF CONVEX SURFACES

INTO SPHERES

Gerhard Huisken

In this talk we consider a uniformly convex n-dimensional $(n \ge 2)$ surface M, which is smoothly imbedded in \mathbb{R}^{n+1} . Let us assume that M is locally given by a diffeomorphism

$$F_0 : U \subseteq \mathbb{R}^n \longrightarrow F_0(U) \subseteq M \subseteq \mathbb{R}^{n+1}$$
.

Then we want to find a whole family of diffeomorphisms $F(\cdot,t)$ satisfying the evolution equation

$$\frac{\partial}{\partial t} F(\vec{x},t) = \Delta_t F(\vec{x},t) , \quad \vec{x} \in U$$

$$F(\cdot,0) = F_0$$
(1)

where Δ_t is the Laplace-Beltrami operator on the manifold M_t , which is given by F(•,t). We have

$$\Delta_{t} F(\vec{x},t) = -H(\vec{x},t) \cdot v(\vec{x},t)$$

where $H(\cdot,t)$ is the (positive) mean curvature and $v(\vec{x},t)$ the (outer) unit normal on M_t : The surfaces M_t are moving along their mean curvature vector. Since problem (1) is parabolic, we know that it has a smooth solution at least on some short time interval.