ON SUFFICIENT CONDITIONS FOR OPTIMALITY

S. Rolewicz, Warszawa*)

Let f, g_1, \ldots, g_m be continuously differentiable real valued functions defined on a domain Ω of n-dimensional real space \mathbb{R}^n . We consider the following optimization problem.

(1)

 $f(x) \rightarrow inf$

$$g_i(x) \leq 0$$
, $x \in \Omega$.

Let $x_0 \in \Omega$. We assume that at x_0 all constraints g_i are active, i.e. $g_i(x_0) = 0$.

THEOREM 1 ([9]): Suppose that at the point x_0 all gradients of g_i , ∇g_i , are linearly independent. Suppose that at x_0 Kuhn-Tucker necessary conditions for optimality hold, i.e. there are $\lambda_i \ge 0$ such that

(2)
$$\nabla(f + \Sigma \lambda_{i}g_{i}) \Big|_{x_{0}} = 0 .$$

If all $\lambda_i > 0$, i = 1, 2, ..., m, then x_0 is a local minimum of problem (1) if and only if it is a local minimum of the following equality problem

 $f(x) \rightarrow inf$

(3)

 $g_{i}(x) = 0$.

The proof of Theorem 1 is elementary and uses only the implicit functions theorem. Theorem 1 gives a very useful algorithm for reducing a problem of sufficient condition for problem (1) to well-known classical

^{*)} This work was partially supported by Monash University, Clayton, Victoria.