MINIMUM PROBLEMS FOR NONCONVEX INTEGRALS

Nicola Fusco

1. INTRODUCTION

Let us consider an integral of the Calculus of Variations of the following type :

(1.1)
$$F(u;\Omega) = \int_{\Omega} f(x,u(x),Du(x)) dx,$$

where Ω is a bounded open set in \mathbb{R}^n , $u : \Omega \rightarrow \mathbb{R}^m$ is a function belonging to $W^{1,p}(\Omega;\mathbb{R}^m)$, p > 1 and $f(x,u,\xi)$ is a Carathéodory function, i.e. measurable with respect to x, continuous in (u,ξ) . The direct method to get the existence of minima for the Dirichlet problem

(P) Inf {F(u;
$$\Omega$$
) : u-u₀ $\in W_0^{1,p}(\Omega; \mathbb{R}^m)$ },

where u_0 is a fixed function in $W^{1,p}$, is based on the sequential lower semicontinuity of F(s.l.s.c.) in the weak topology of $W^{1,p}$.

If m=1, it is well known (see [7],[8],[10]) that the l.s.c. of F is equivalent, under very general growth assumptions on f, to the condition that the integrand is a convex function of the variable ξ . But if m > 1, convexity is no longer a necessary condition. To see this, let us consider a continuous function f: $\mathbb{R}^{mn} \to \mathbb{R}$ such that the functional $\int_{\Omega} f(Du(x)) dx$ is weakly*