TRANSFERRING FOURIER MULTIPLIERS

A.H. Dooley

1. FOURIER MULTIPLIERS OF L^P(G)

Let G be a compact Lie group, and \hat{G} is dual (a maximal set of irreducible representations of G). The Fourier transform of $f \in L^1(G)$ associates to $\sigma \in \hat{G}$, the $d_{\sigma} \times d_{\sigma}$ matrix $\int_G f(x) \sigma(x^{-1}) dx$ (where d_{σ} is the dimension of the space in which σ acts).

The Fourier multipliers of $L^{p}(G)$ are sequences (A_{σ}) of matrices so that if $(\hat{f}(\sigma))$ is the Fourier series of an L^{p} function, so is $(A_{\sigma}, \hat{f}(\sigma))$.

Example. If G = SU(2), $\hat{G} \equiv \{0, \frac{1}{2}, 1, \ldots\}$ and if $\ell \in \hat{G}$, σ_{ℓ} has dimension $2\ell+1$, and we look for sequences $A_0, A_{\frac{1}{2}}, \ldots$, where A_{ℓ} is a $(2\ell+1) \times (2\ell+1)$ matrix.

2. EXAMPLES OF MULTIPLIERS

(i) Central multipliers. We restrict to $A_{\sigma} = c_{\sigma}I$ for $c_{\sigma} \in \mathbb{C}$. This is the case which has been most studied. For example, Bonami and Clere [1] and Clere [2] have shown that the

Poisson kernel
$$e^{-\sqrt{\frac{k}{R}}} I_{\sigma_k}$$

Gauss kernel $e^{-\frac{k}{R}} I_{\sigma_k}$
Riesz kernel $\left(1 - \frac{k}{R}\right)^{\delta} + I_{\sigma_k}$ $(\delta > 1)$

are bounded summability kernels in $L^p(SU(2))$. These results also