GROUP ACTIONS ON CUNTZ ALGEBRAS

A.L. Carey and D.E. Evans

1. INTRODUCTION

The Cuntz algebra θ_n (1 < n < ∞) is the C* -algebra generated *by the range of a linear map s from Cⁿ to the bounded linear operators on an infinite dimensional Hilbert space which satisfies

(1.1)
$$s(h_1)*s(h_2) = \langle h_1, h_2 \rangle 1$$
, $h_i \in C^n$, $j = 1, 2$

(1.2)
$$\sum_{j=1,n} s(e_j) s(e_j)^* = 1$$
,

where < ,> is an inner product on C^n , $\{e_j\}_{j=1,n}$ an orthornormal basis with respect to this inner product and 1 the identity operator. One may think of θ_n as a 'non-commutative version' of the unit sphere in C^n . This analogy is reinforced by the fact that the noncompact lie group U(n,1) acts automorphically on θ_n by generalised Mobius transformations. This U(n,1) action was introduced by Voiculescu [6], however, understanding his proof of its existence requires some stamina on the part of the reader. We show here that the action may be defined using just elementary algebra and the result of Cuntz [3] that θ_n is uniquely determined by the relations (1.1) and (1.2) satisfied by s.

2. THE U(n,1) ACTION

Define a row vector $s = (s(e_1), ..., s(e_n))$. Then with s^* denoting the column vector with entries $s(e_j)^*$ (j = 1,...,n) one has from (1.1) and (1.2) the relations

$$(2.1) \qquad \qquad ss^* = 1 , \ s^*s = diag(1, ..., 1)$$

If A, B are $n \ge n$ matrices over C and sAs* denotes the obvious matrix product then