TRACES OF ANISOTROPIC FUNCTION SPACES. APPLICATIONS

Hans Triebel

1. INTRODUCTION

Let $R_2^{}$ be the two-dimensional euclidean space, the plane. Let $1 and <math display="inline">s = 1, 2, 3, \ldots$. Then

(1)
$$W_{p}^{S}(R_{2}) = \{f \mid f \in L_{p}(R_{2}), \|f\|W_{p}^{S}(R_{2})\| = \sum_{|\alpha| \leq s} \|D^{\alpha}f|L_{p}(R_{2})\| < \infty \}$$

are the classical Sobolev spaces, where ${}_{\rm L}({}^{\rm R}_2)$ has the usual meaning (complex-valued functions). It is well-known that the trace-operator

(2)
$$R: f(x_1, x_2) \rightarrow f(x_1, 0)$$

is a retraction from $W_p^{s}(R_2)$ onto the special Besov space (~ Lipschitz space) $B_p^{s-1/p}(R_1)$ on the real line R_1 . Here *retraction* means that there exists a linear and bounded extension operator S from $B_p^{s-1/p}(R_1)$ (the trace space) into $W_p^{s}(R_2)$ such that

(3) RS = id (identity in
$$B_p^{s-1/p}(R_1)$$
).

In other words, if a trace-operator is a retraction then this assertion covers both the "direct" and the "inverse" embedding theorems and indicates that R is a mapping "onto". The above-mentioned special Besov spaces $B_p^{\sigma}(R_1)$ with $\sigma > 0$ and 1 are defined as $follows. If <math>t \in R_1$ and $\tau \in R_1$ then

(4)
$$(\Delta_{\tau}^{1}f)(t) = f(t+\tau) - f(t) , \qquad \Delta_{\tau}^{m} = \Delta_{\tau}^{1} \Delta_{\tau}^{m-1}$$

with m = 2, 3, ... are the usual differences. Then $B_p^{\sigma}(R_1)$ is the collection of all complex-valued functions such that

120