OVERDETERMINED SYSTEMS DEFINED BY COMPLEX VECTOR FIELDS

Francois Treves

§1. FORMALLY INTEGRABLE STRUCTURE

Let Ω be a C^{∞} manifold (Hausdorff, countable at infinity), dim $\Omega = N(\geq 1)$, and let L_{L}, \ldots, L_{n} be n complex vector fields, of class C^{∞} , in Ω , linearly independent at every point (so that $n \leq N$). We would like to study the *homogeneous* equations

(1)
$$L_{jh} = 0$$
, $j = 1, ..., n$

as well as the inhomogeneous equations

(2)
$$L_{i}u = f_{i}, j = 1, ..., n$$
,

with right-hand sides $f_j \in C^{\infty}(\Omega)$. It is known from the study of a single vector field (*i.e.*, n = 1) that difficulties arise even at the *local* level. In this expository note I shall limit myself to the local viewpoint and Ω can be taken to be an open subset of Euclidean space \mathbb{R}^N . Yet it is perhaps advisable to continue thinking of Ω as a manifold lest the important consideration of invariance be forgotten.

The questions one begins by asking, about equations (1) and (2), are the standard ones: existence, uniqueness and approximation of solutions, their regularity, their representations (say, by means of integral operators), etc. Answering these questions with satisfactory generality seems to be very difficult. Here I shall briefly describe