EXISTENCE OF WILLMORE SURFACES

Leon Simon

For compact surfaces Σ embedded in $\operatorname{\mathbb{R}}^n$, the Willmore functional is defined by

$$F(\Sigma) = \frac{1}{2} \int_{\Sigma} |\underline{\underline{\mu}}^2|$$

where the integration is with respect to ordinary 2-dimensional area measure, and H is the mean curvature vector of Σ (in case n = 3 we have $|\underline{H}| = |\kappa_1 + \kappa_2|$, where κ_1 , κ_2 are principal curvatures of Σ). In particular $F(S^2) = 8\pi$.

For surfaces Σ without boundary we have the important fact that $F(\Sigma)$ is invariant under conformal transformations of \mathbb{R}^n ; thus if $\tilde{\Sigma} \subset \mathbb{R}^n$ is the image of Σ under an isometry or a scaling $(x \mapsto \lambda x, \lambda > 0)$ or an inversion in a sphere with centre not in Σ (e.g. $x \mapsto x/|x|^2$ if $0 \notin \Sigma$) then

(1) $F(\Sigma) = F(\widetilde{\Sigma})$.

(See [WJ], [LY], [W] for general discussion.)

For each genus $g = 0, 1, 2, \ldots$ and each $n \ge 3$ we let

$$\beta_g^n = \inf F(\Sigma)$$
,

where the inf is taken over compact genus g surfaces without