THE OBLIQUE DERIVATIVE PROBLEM FOR EQUATIONS OF MONGE-AMPERE TYPE IN TWO DIMENSIONS

John I E Urbas

1. Introduction

In this paper we are concerned with the existence of convex classical solutions of the oblique derivative problem for equations of Monge-Ampère type,

(1.1)
$$\det D^2 u = f(x,u,Du) \text{ in } \Omega ,$$

(1.2)
$$D_{\beta} u = \varphi(x, u) \text{ on } \partial\Omega$$
.

Here Ω is a uniformly convex domain in \mathbb{R}^2 , f, φ are prescribed functions on $\overline{\Omega} \times \mathbb{R} \times \mathbb{R}^2$, $\partial \Omega \times \mathbb{R}$ respectively with f positive, and β is a unit vector field on $\partial \Omega$ satisfying

$$(1.3) \qquad \beta \cdot \nu > 0$$

where ν is the inner unit normal to $\partial\Omega$. This problem, and in particular the case $\beta = \nu$, was recently studied for domains $\Omega \subset \mathbb{R}^n$, $n \geq 2$, by Lions, Trudinger and Urbas [5], who proved a priori estimates for the derivatives up to second order for convex solutions of (1.1), (1.2) under suitable regularity and structure hypotheses on Ω , f, φ and β . In particular, the second derivative estimate in [5] requires $\beta = \nu$, and it does not appear that the method used there can be modified to work for more general β . However, if the domain Ω is a ball and $f^{1/n}$ is convex with respect to the gradient variables,