REGULARITY AND SINGULARITY FOR ENERGY MINIMIZING MAPS

R. M. Hardt *

1. INTRODUCTION

We will consider the occurrence of singularities in a class of boundary-value mapping problems. Suppose M is an m dimensional smooth compact Riemannian manifold with boundary and N is a smooth compact Riemannian manifold without boundary. Via an isometric embedding, we view N as a Riemannian submanifold of \mathbb{R}^k . We will consider the following type of problem:

Given a smooth φ : $\partial M \rightarrow N$, find a least energy $u : M \rightarrow N$ with $u \mid \partial M = \varphi$.

While various general energy functionals may be treated, we will mainly discuss, for $1 \le p \le \infty$, the ordinary *p*-energy

∫_MI⊽uI^pdM .

Here, the most important case is p = 2 where critical points are *harmonic maps*. In local coordinates x_1, x_2, \dots, x_m on M, the expression $|\nabla u|^p$ should be interpreted as

 $[\Sigma_{\alpha,\beta} \Sigma_{i,j} (\partial u^i / \partial x_{\alpha}) g^{\alpha,\beta} (\partial u^j / \partial x_{\beta})]^{p/2}$ and the volume element dM as $(\det g)^{1/2} dx$ where $g = g_{\alpha,\beta} = [g^{\alpha,\beta}]^{-1}$ is the matrix representing the metric of M in these coordinates. Since only the topology and geometry of N will be relevant for our discussion of regularity and singularity, we will, for simplicity of notations, assume that M *is an open subset of* \mathbb{R}^m with the standard Euclidean metric.

* Research partially supported by the National Science Foundation