REMARKS ON 2ND ORDER ELLIPTIC SYSTEHS IN LIPSCHITZ DOMAINS

G.C. Verchota

In this talk I will discuss a method for solving the Dirichlet and Neumann boundary value problems for 2 nd order strongly elliptic systems with real coefficients in Lipschitz domains. As it is work in progress only the most elementary case, that of two equations in two unknowns in planar domains, will be presented. However, as I hope to show, there is at least no apparent impediment to the generalizing of our ideas to general 2 nd order systems in higher dimensions.

Consider the 2 nd order differential system equation in two variables $X=\left(X_{1}, X_{2}\right) \in \mathbb{R}^{2}$ for m unknowns $\vec{u}=\left(u^{1}, \ldots, u^{m}\right)$ given by

$$
\begin{equation*}
D_{i} a_{i j}^{r s} D_{j} u^{s}(X)=0 \quad, \quad 1 \leq r \leq m \tag{1}
\end{equation*}
$$

Here we use summation convention, $1 \leq i, j \leq 2,1 \leq s \leq m$ and D_{i} denotes $\frac{\partial}{\partial X_{i}}$. The coefficients $a_{i j}^{r s}$ are constant and satisfy the symmetry condition:

$$
\begin{equation*}
a_{i j}^{r s}=a_{j i}^{s r} \tag{2}
\end{equation*}
$$

It is convenient to think of the $a_{i j}^{r s}$ as forming an m×m matrix with entries, $A^{r s}$; for each fixed r and $s, A^{r s}$ is a 2×2 matrix in i and j. Then r and s denote the row and column respectively of the $m \times m$ matrix and i and j the row and column respectively of the 2×2 matrices.

