SOME BASIC SEQUENCES AND THEIR MOMENT OPERATORS

Rodney Nillsen*

1. INTRODUCTION

A well known result in Fourier analysis (see [3, p.107], for example) says that if the Fourier series of a continuous function on the circle group is lacunary, then the series converges uniformly to the function. Equivalently, if $(\alpha(n))$ is a lacunary sequence of positive integers (that is, $\alpha(n+1)\alpha(n)^{-1} \ge \gamma > 1$, for all n and some γ), then the sequence $1, e^{i\alpha(1)t}, e^{-i\alpha(1)t}, e^{i\alpha(2)t}, e^{-i\alpha(2)t}, \dots$ is basic in $C(0, 2\pi)$.

On the other hand, Gurarii and Macaev ([5]) proved some analogues of this result for power sequences in C([0,1]) and $L^p(0,1)$. Letting $1 \le p < \infty$ and letting $(\alpha(n))$ be a given increasing sequence of positive numbers, they proved that $(\alpha(n))$ is lacunary if and only if $(\alpha(n)^{1/p}t^{\alpha(n)-1/p})$ is basic in $L^p(0,1)$, in which case this basic sequence is equivalent to the standard basis in ℓ^p . They also proved that $(\alpha(n))$ is lacunary if and only if $(t^{\alpha(n)})$ is basic in C([0,1]).

In [4], Edwards has considered, in a dual form, a related problem concerning sequences of measures on a compact Hausdorff space K. If (μ_n) is a weak* convergent sequence of measures on K which satisfies a one term recurrence relation, he gives conditions which ensure that $\{(\int_K f d\mu_n) : f \in C(K)\} = c$. This result is closely related to the problem of finding conditions for (μ_n) to be a basic sequence of measures on K.

The present paper presents some analogues of the preceding results which are derived by considering a general problem in Banach spaces. Throughout, X will denote a given Banach space with dual X^* , (b_n) will denote a given sequence of scalars, $\sigma = (v_n)$ will denote a given sequence of vectors in X and $\tau = (x_n)$ will denote the sequence in X

246

^{*} This work is dedicated to Professor Igor Kluvánek, for whose encouragement and intellectual stimulation the author has been greatly indebted.