ASYMPTOTIC LIMITS IN MULTI-PHASE SYSTEMS

Greg Knowles

In this note we consider the asymptotic behaviour of an inviscid fluid with heat conduction. This work has been done in conjunction with J. Ball [2]. The fluid is assumed homogeneous and to occupy a spatial region $\omega \in \mathbb{R}^n$, where ω is bounded and open. At time t and position x e ω the fluid has density $\rho(x,t) \geq 0$, velocity $v(x,t) \in \mathbb{R}^n$, and temperature $\theta(x,t) > 0$. For simplicity we assume there is no external body force or heat supply. The governing equations are then

ρů	=	-	grad p		(1)
p	+	ρ	div(v)	= 0	(2)
ρÛ	÷	ρ	div(v)	+ div(q) = 0	(3)

where the dots denote material time derivatives, p is the pressure, U the internal energy density and q the (spatial) heat flux vector. The constitutive relations are given in terms of the Helmholtz free energy, $A(\rho,\theta)$ and specific entropy $\eta(\rho,\theta)$, by

 $p = \rho^{2} \frac{\partial A}{\partial \rho} , \quad \eta = -\frac{\partial A}{\partial \theta} , \quad U = A + \eta \theta$ (4) $q = q(\rho, \theta, \text{grad } \theta).$

We impose the boundary conditions

$$\mathbf{v} \cdot \mathbf{n} \bigg|_{\partial \omega} = 0$$
 (5)