EIGEN-EXPANSIONS OF SONE SCHRO̊DINGER OPERATORS AND NILPOTENT LIE GROUPS

Andrzej Hulanicki and Joe W. Jenkins

This note is a summary of the results previously obtained by the authors, and of a number of new results and problems.

In papers [8] - [10] the authors studied Schrödinger operators $\mathrm{H}=\mathrm{L}+\mathrm{V}$, on \mathbb{R}^{d},.there

$$
\begin{equation*}
-L=\sum_{j=1}^{d}(-1)^{n_{j_{D}}}{ }_{j}^{2 n_{j}}, \quad n_{j} \geq 1 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
V(x)=\sum_{j=1}^{k} P_{j}^{2}(x) \text {, where } P_{j} \text { are real polynomials. } \tag{2}
\end{equation*}
$$

We say that the family of polynomials is irreducible if there is no linear change of variables in \mathbb{R}^{d}, such that all the polynomials depend on a smaller number of variables. By restriction to a lower dimensional subspace of \mathbb{R}^{d}, we consider only operators H for which the polynomials $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{k}}$ are irreducible.

THEOREM 1 [9] For some N and $\lambda>0,(\lambda+H)^{-N}$ is a Hilbert-Schmidt operator on $L^{2}\left(\mathbb{R}^{d}\right)$.

Let $0<\lambda_{1} \leq \lambda_{2} \leq \ldots$ be the eigenvalues and $\varphi_{1}, \varphi_{2}, \ldots$ the corresponding eigen-functions of H.

THEOREM 2 [9] There is an N such that if $K \in C^{\mathbb{N}}\left(\mathbb{R}^{+}\right)$and

$$
\begin{equation*}
(1+\lambda)^{\mathbb{N}}\left|K^{(j)}(\lambda)\right| \leq C \text { for } \lambda>0, j=0, \ldots, N \tag{3}
\end{equation*}
$$

