EIGEN-EXPANSIONS OF SOME SCHRÖDINGER OPERATORS AND NILPOTENT LIE GROUPS

Andrzej Hulanicki and Joe ₩. Jenkins

This note is a summary of the results previously obtained by the authors, and of a number of new results and problems.

In papers [8] - [10] the authors studied Schrödinger operators $H = L \, + \, V, \,\, \text{on} \quad \mathbb{R}^d \ , . \, \text{there}$

(1)
$$-L = \sum_{j=1}^{d} (-1)^{n_j} D_j^{2n_j}, \quad n_j \ge 1$$

(2)
$$V(x) = \sum_{j=1}^{k} P_{j}^{2}(x)$$
, where P_{j} are real polynomials.

We say that the family of polynomials is irreducible if there is no linear change of variables in \mathbb{R}^d , such that all the polynomials depend on a smaller number of variables. By restriction to a lower dimensional subspace of \mathbb{R}^d , we consider only operators H for which the polynomials P_1, \ldots, P_k are irreducible.

THEOREM 1 [9] For some N and $\lambda > 0$, $(\lambda + H)^{-N}$ is a Hilbert-Schmidt operator on $L^{2}(\mathbb{R}^{d})$.

Let $0 < \lambda_1 \leq \lambda_2 \leq \ldots$ be the eigenvalues and $\varphi_1, \varphi_2, \ldots$ the corresponding eigen-functions of H.

THEOREM 2 [9] There is an N such that if $K \in C^N(\mathbb{R}^+)$ and

(3)
$$(1 + \lambda)^{\mathbb{N}} | \mathbb{K}^{(j)}(\lambda) | \leq C \text{ for } \lambda > 0, j = 0, \dots, \mathbb{N}$$