SOLVABILITY OF DIFFERENTIAL OPERATORS II;

SEMISIMPLE LIE GROUPS

F.D. BATTESTI and A.H. DOOLEY

1. INTRODUCTION

Let G be a noncompact, connected, semisimple Lie group with finite centre and P a differential operator on G. P is <u>left invariant</u> if for all g ε G and for all f ε C^{∞}(G), PL_gf = L_gPf, where L_g denotes left translation. Similarly one defines <u>right invariance</u> and <u>bi-</u><u>invariance</u>.

Elements X of the Lie algebra g act on $C^{\overset{\infty}{}}(G)$ by

$$(Xf)(g) = \frac{d}{dt}|_{t=0} f(g exp tX)$$

These define left invariant operators and in fact every left invariant operator is obtained by the extension of this map to the universal enveloping algebra $U(g_{C})$. The bi-invariant operators correspond to the centre $Z(g_{C})$ of $U(g_{C})$.

DEFINITION A differential operator P has <u>fundamental solution</u> E if E is a distribution (in \mathfrak{D} ') such that PE = δ_{e} .

We say that P is <u>locally solvable</u> if $PC^{\infty}(V) \supseteq C_{c}^{\infty}(V)$ for some neighbourhood V of the identity, and P is <u>globally solvable</u> if $PC^{\infty}(G) = C^{\infty}(G)$.

This research was supported by ARGS