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FUNCTIONAL CALCULI FOR THE LAPLACE OPERATOR IN LP(ftZ) 

Werner J. Ricke/ 

The Laplace operator L = -d2 /d:r:2 in LP(R,), 1 < p < oo, with domain 

V(L) = {f E LP(R); f E AC(R), !" E LP(R)} 

IS a dosed, densely defined operator with spectrum u(L) = [O,oo); here AC(R) is the 

space of functions on the real line R which are absolutely continuous on bounded 

intervals. It is known that -L is the infinitesimal generator of a strongly continuous 

C0-semigroup of contractions, namely the heat semigroup given by 

f E LP(R,) , 

for each t > 0, and that L satisfies the resolvent estimates 

). E 

For 0 < a < ;t, define the open cone Sa = E C\{0}; larg(z)[ < o}. A closed 

operator T in a Banach space X is said to be of type w where 0 :S: V.-' < Jr, if li(T) <;:: 

s .. , (the bar denotes closure and, by definition, 50 = IO,=)) and, for 0 < < < there 

is a positive constant c( such that 

h follows from that if 0 < f < 1r, then 

and hence L ks of type w = 0. ln particular, -L then generates an analytic semigroup in 

Theorem 3.3.1 ~" 

In the Hilbert space setting it is often the case that operators of type w admit an 

H=( S11 ) functional calculus for every w < JJ < 1r. For example, this is so for positive 
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