FOURIER THEORY ON LIPSCHITZ CURVES

Alan McIntosh and Qian Tao

The aim of this talk is to indicate how the theory of Fourier multipliers in $L_p(\mathbb{R})$ can be adapted when the real line \mathbb{R} is replaced by a Lipschitz curve γ . Details will appear in [6].

(I) Let us start with a resumé of the usual theory concerning $L_p(\mathbb{R})$.

(Ia) The Fourier transform

$$\hat{f}(\xi) = \int e^{-ix\xi} f(x) dx$$

$$\mathbb{R}$$

defines a mapping

$$L_1(\mathbb{R}) \xrightarrow{\sim} C_o$$

where C_o denotes the space of continuous functions on $(-\infty,\infty)$ which tend to zero at $\pm\infty$. We consider the inverse Fourier transform

$$\check{w}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ix\xi} w(\xi) d\xi$$

 L_{p} (R) $\stackrel{\sim}{\leftarrow}$ S

where S is the Schwartz space of rapidly decreasing functions on $(-\infty,\infty)$. Then

(1)
$$\int_{\mathbb{R}} f(x) \ \tilde{w}(x) \ dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\xi) \ w(-\xi) \ d\xi$$

for all $f \in L_1(\mathbb{R})$ and $w \in S$, so it is consistent with the case p = 1 to define

by

$$L_p(\mathbb{R}) \xrightarrow{\sim} S'$$

$$\langle \hat{f}, w_{-} \rangle = 2\pi \int f(x) \check{w}(x) dx , w \in S ,$$

 \mathbb{R}

for $1 , where w₋(<math>\xi$) = w(- ξ) and S' is the space of the tempered distributions. We note that

(2) $\{\tilde{w} \mid w \in S\}$ is dense in $L_p(\mathbb{R})$, $1 \leq p < \infty$, and in $C_o(\mathbb{R})$, from which it is immediate that

(3) $L_{p}(\mathbb{R}) \xrightarrow{\sim} S'$ is one-one.

Of course, the following also holds: