HANKEL OPERATORS ON THE PALEY-WIENER SPACE IN Rd

Peng Lizhong

Let $I^d = (-\pi,\pi)^d = \{\xi \in \mathbb{R}^d : -\pi < \xi_j < \pi, i = 1,...,d\}$ and let $\stackrel{\cdot}{x_1^d}$ denote the characteristic function of I^d . Denote the Fourier transform of g by $F(g) = \hat{g}$ and the inverse Fourier transform of f by $F^{-1}(f) = \check{f}$:

(1)
$$\hat{g}(\xi) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} g(x) e^{-i\xi \cdot x} dx$$

and

(2)
$$\check{f}(x) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} f(\xi) e^{i\xi \cdot x} d\xi$$

The Paley-Wiener Space on $\,I^d$, $\,PW(D^d)$, is defined to be the image of $\,L^2(\,I^d)\,$ under $\,F^{-1}$, i.e.

(3)
$$PW(I^d) = \{F^{-1}(\chi_{I^d}f) : f \in L^2(I^d)\}$$
.

As is well known, f is in PW(I^d) if and only if it is the restriction to \mathbb{R}^d of an entire function of exponential type at most $(\pi + \epsilon, \dots, \pi + \epsilon)$ in \mathbb{C}^d which satisfies $\|\|f\|_2 = \left[\int_{\mathbb{R}^d} |f(x)|^2 dx\right]^{1/2} < \infty$.

Let $\underset{I^d}{P}$ denote the projection defined by $(\underset{I^d}{P}_{I^d}g) = \chi_{I^d}\hat{g}$. The Toeplitz operator on $PW(I^d)$ with symbol b is defined by

(4)
$$T_b(f) = P_I^d(bf)$$
, for $f \in PW(I^d)$.

And the Hankel operator on $PW(I^d)$ with symbol b is defined by

(5)
$$H_b(f) = P_{I^d}(b\overline{f})$$
, for $f \in PW(I^d)$.