PIECEWISE LINEAR FUNCTIONS AND SERIES EXPANSIONS IN TERMS OF DIRICHLET AND FEJÉR KERNELS

Rodney Nillsen

If $\left(x_{n}\right)$ is a sequence of vectors in a Banach space, there are various results which describe, in particular cases, when a subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ has certain properties, such as being basic, which are not possessed by the original sequence. For example, take the sequence $\left(e^{i n t}\right)_{n=-\infty}^{\infty}$ in $C([0,2 \pi])$. This sequence is not basic, but any lacunary subsequence of it is basic. Results along similar lines, for different sequences, may be found in [1], [2] and [3].

In this note are announced some results for certain sequences of vectors in $L^{p}(\mathbb{R})$ and $l^{p}(\mathbb{Z})$, for $1 \leq p<\infty$, these vectors being linear on certain subintervals of \mathbb{R} or \mathbb{Z}. This enables a certain characterization to be given of those functions which can be expanded in terms of a lacunary sequence of Dirichlet and Fejér kernels in $L^{2}(-\pi, \pi)$.

Let $1 \leq p \leq \infty$. Let $\alpha(0)=0$ and let $(\alpha(n))$ be a given strictly increasing sequence of positive real numbers. The sequence $(\alpha(n))$ is said to be lacunary if there is a $\delta>1$ such that $\alpha(n+1) \alpha(n)^{-1} \geq \delta>1$, for all $n \in \mathbb{N}$. A Banach subspace $P L(p, \alpha)$ of $L^{p}(\mathbb{R})$ is defined as follows: $f \in P L(p, \alpha)$ if and only if $f \in L^{p}(\mathbb{R}), f$ is even, f is zero on $\cap\{t:|t| \geq \alpha(n)\}$ and f is the restriction of a polynomial function of degree at most one upon each interval of the form $[\alpha(n-1), \alpha(n))$, for $n \in \mathbb{N}$. Let $P L C(p, \alpha)$ denote those functions in $P L(p, \alpha)$ which are continuous and let $P C(p, \alpha)$ denote those functions in $P L(p, \alpha)$ which are constant upon each interval of the form $[\alpha(n-1), \alpha(n))$, for $n \in \mathbb{N}$. If $\lim _{n \rightarrow \infty} \alpha(n)=\infty$, it is clear that $\operatorname{PLC}(p, \alpha) \cap P C(p, \alpha)=\{0\}$. Let $\left(u_{n}\right)$ be the sequence in $P L(p, \alpha)$ given by $u_{2 n-1}(t)=1$ for $|t| \leq \alpha(n), u_{2 n-1}(t)=0$ for $|t|>\alpha(n)$, and $u_{2 n}(t)=$ maximum $(0, \alpha(n)-|t|)$.

THEOREM 1. Let $1 \leq p<\infty$. Then the following conditions are equivalent.
(i) $(\alpha(n))$ is lacunary,
(ii) $P L(p, \alpha)$ is the direct sum of $P L C(p, \alpha)$ and $P C(p, \alpha)$,

