NORMAL SUBRELATIONS OF ERGODIC EQUIVALENCE RELATIONS

J. Feldman⁽¹⁾, C.E. Sutherland⁽²⁾ and R.J. Zimmer⁽³⁾

\$0 INTRODUCTION

In this paper we introduce the notion of a "normal" subrelation of an ergodic equivalence relation, and study some of its consequences. Details will appear elsewhere [2].

Throughout, we deal with a countable non-singular equivalence relation S on a standard non-atomic probability space (X,B,μ) , as in [1] or [4]. Thus $S \subseteq X \times X$ is a Borel set, for each $x \in X$, $S(x) = \{y \in X : (y,x) \in S\}$ is countable, and for each $E \in B$ with $\mu(E) = 0$, $\mu(S(E)) = 0$ where $S(E) = \cup\{S(x) : x \in E\}$. For our purposes, there is no loss of generality in assuming that μ is a probability measure, and that S is ergodic i.e. for $E \in B$, $\mu(S(E)) \in$ $\{0,1\}$; we will hence forth make these assumptions. In addition, we assume for simplicity that the measure μ is finite and invariant, as in [1] i.e. that S is of type II₁.

In recent years, much has been learned about the structure of such relations, up to isomorphism; here S_1 on (X_1, B_1, μ_1) is isomorphic to S_2 on (X_2, B_2, μ_2) if there is a bimeasurable map $\phi : X'_1 \to X'_2$ between conull subsets of X_1 and X_2 for which $\mu_2 \circ \phi$ has the same null sets as μ_1 , and for which $(x, y) \in S_1$ if and only if $(\phi(x), \phi(y)) \in S_2$. The reader is referred to [1,3,7] for a glimpse of what is known. Our interest however is not so much in the relations themselves, but in the possible subrelations R of a given ergodic equivalence relation S

: 95