Harmonic Analysis and Exceptional Representations of Semisimple Groups

K.M. DAVIS, J.E. GILBERT, R.A. KUNZE

Introduction.

The purpose of this paper is to extend the results announced in the paper of Gilbert et.al. [3]. The authors showed that the concepts and techniques of Euclidean H^p theory can be applied to give realizations of ladder representations of SO(4, 1). (cf. Dixmier [2]). They single out for study a first-order differential operator \mathfrak{d} , which has the same principal symbol as the Calderon-Zygmund higher gradients operator on \mathbb{R}^4 . The operator \mathfrak{d} acts on functions with values in the space of spherical harmonics, which transform on the left according to the spherical harmonic representation (m, 0) of SO(4). The authors showed:

- 1) **5** is an elliptic differential operator.
- 2) The kernel of \mathfrak{d} , decomposed under the right-action of SO(4), has a lowest K-type (m, 0), and the remaining K types are of the form (m + j, 0), j > 0.
- There is an embedding of limits of complementary series into the kernel of ö, showing ker ö is non-trivial.
- Under the right action of SO(4,1), the kernel of 5 is irreducible and unitarizable.

The authors of [3] defined ker δ as the intersection of the kernels of two Schmid operators (cf. Schmid [7]), and all the results of that paper followed from known results for discrete series. The ellipticity of δ followed from known embeddings of Schmid kernels into twisted Dirac operators; K-type information could be obtained from the Blattner multiplicity formulæ of Hotta and Parthasarathy ([4]); embeddings followed from known embeddings of discrete series into non-unitary principal series given by Knapp and Wallach [6]. Finally, unitarizability followed