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1. INTRODUCTION
Consider the problem of estimating the mth derivative of a data function

g(x), given only N sampled values
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where e, are uncorrelated random errors with mean zero and common variance o2
(possibly unknown). For simplicity consider equally-spaced sampling points
xn = n/N on the interval [0,1). Let m be a strictly positive integer, and
denote the mth derivative by f(x) = g(m)(x), which is to be estimated on the

interval 0 ¢ x < 1.

If K denotes an integral operator such that Kf = g, then a stabilized

derivative can be constructed using pth-order Tikhonov regularization:
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where FP is a suitably chosen Hilbert space with norm parametrized by the

.|P
order of regularization p > 0, and the constant A > 0 is the regularization

parameter. Let fN o denote the minimizer of (2), where o is the parameter pair
; N
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o = (P,A).
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In theory we may define an absolutely optimal parameter set o as that which
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minimizes (with respect to a) the error
N
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where [.]|F denotes the strongest norm consistent with the smoothness of the
exact derivative f. 1In the data space there will exist a nomm I}.“G such that
(3) and
Ixey, o = allg (4)
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