4. SET FUNCTIONS

Given an additive set function, i, on a semiring of sets, &, the problem
arises naturally of finding a gauge which integrates for x. (See Section 3A.) If there
exists a finite non-negative o¢-additive set function, ¢, on @ such that
[w(X)| < X), for every Xeg, then p is said to have finite variation. In that
case, ¢ is a gauge integrating for x . This situation is classical.

The point of this chapter is that, even when g does not have finite variation,
there may exist gauges integrating for p. For, there may exist a continuous, convex
and increasing function, ®, on [0,0) such that ®(0)=0 and a o-additive set
function ¢:9-[0w) such that &(|w(X)]) < (X), for every Xeg. Then
| X)] < p(X), where p(X)=((X)), for every X€@, and ¢ is the inverse
function to ® . By Proposition 2.26, the gauge p is integrating.

So, we are led to the consideration of higher variations introduced by N. Wiener

and L.C. Young. (See Example 4.1 in Section A below.)

A. Let @ be a multiplicative quasiring of sets in a space . Recall that,
by X =2%(0) is denoted the set of all families of pair-wise disjoint sets belonging to
Q. (See Section 1D.) An element, ?, of ¥ such that its union is equal to Q and,
for every X e @, the sub-family {Ye?: YNnX#0} of 7 is finite, is called a
partition. The set of all partitions is denoted by II = II(Q) .

Let F be a Banach space and p: @~ F an additive set function.

Given a Young function @ (see Section 1G), a set X from ¢ and a partition
P, let

Al P, X) = (| (X .
(A.1) Vg (1,75.X) YE? (lu(Xn¥)])

Then, for the given &, X and a set of partitions A CII, let

(A:2) v(I)(u,A;X) = sup{vq)(u,?;X) :PeA}.
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