THE NORMS OF POWERS OF FUNCTIONS IN THE VOLTERRA ALGEBRA, II

G. A. Willis

In this note we provide an example of a weight sequence $\{\omega_n\}_{n\geq 1}$ which satisfies (i) $\omega_n\geq 0$, (ii) $\omega_{n+m}\leq \omega_n\omega_m$, (iii) $\omega_n^{1/n}\to 0$, and (iv) $\omega_n^{1/n}$ is monotone decreasing, but for which there is no positive $\mu\in (L^1[0,1],*)$ with $\omega_n=\|\mu^n\|$ for every n. This answers the problem of [1], whereas, as detailed there, the example of [2] is for a different, albeit related, problem.

LEMMA. If $\mu \in (L^1[0,1],*)$ is positive and non-nilpotent, then $\frac{\|\mu^{2n}\|}{\|\mu^n\|^2} \to 0$ as $n \to \infty$.

Proof. It is shown in [1] that $\|\mu^{\mathbf{n}}\|^{\frac{1}{\mathbf{n}}}$ is monotone decreasing. Hence, $\frac{\|\mu^{\mathbf{n}+1}\|}{\|\mu^{\mathbf{n}}\|} = \frac{(\|\mu^{\mathbf{n}+1}\|^{\frac{1}{\mathbf{n}+1}})^{\mathbf{n}+1}}{(\|\mu^{\mathbf{n}}\|^{1/\mathbf{n}})^{\mathbf{n}}}$

$$= \left[\frac{\|\mu^{n+1}\|^{\frac{1}{n+1}}}{\|\mu^{n}\|^{1/n}}\right]^{n} \cdot \|\mu^{n+1}\|^{\frac{1}{n+1}}$$

$$\leq \|\mu^{n+1}\|^{\frac{1}{n+1}} \to 0 \text{ as } n \to \infty,$$

that is, the sequence $\left(\|\mu^{n}\|\right)_{n=1}^{\infty}$ is regulated.

Now let $J = \{f \in L^1[0,1]: \lim_{n \to \infty} \frac{\|f * \mu^n\|}{\|\mu^n\|} = 0\}$. Then J is a closed ideal in $(L^1[0,1],*), [2]$. Since μ is not nilpotent, $\inf(\operatorname{supp}(\mu)) = 0$, and since $\mu \in J$ it follows that $J = L^1[0,1]$. Therefore, $\lim_{n \to \infty} \frac{\|f * \mu^n\|}{\|\mu^n\|} = 0$ for every $f \in L^1[0,1]$. If p is a probability measure with support contained in $(0,\frac{1}{2})$, then $\|p*\mu^n\| \ge \|\delta_{1/2}*\mu^n\|$ and so

$$\lim_{\mathbf{n}\to\infty}\frac{\|\boldsymbol{\delta}_{1/2}*\boldsymbol{\mu}^{\mathbf{n}}\|}{\|\boldsymbol{\mu}^{\mathbf{n}}\|}=0.$$