COMPLEMENTATION PROBLEMS CONCERNING THE RADICAL OF A COMMUTATIVE AMENABLE BANACH ALGEBRA

P. C. Curtis, Jr.

In 1986 Bachelis and Saeki, [1], showed that if \mathfrak{A} is a commutative Banach alegbra, with identity and non-zero radical R, which in addition satisfies the following condition

$$A: \sup \{ x \in \mathfrak{A}^{-1} : \sup_{n \in \mathbb{Z}} \|x^n\| < \infty \}^- = \mathfrak{A} \ ,$$

then there does not exist a closed subalgebra \mathfrak{B} complementary to the radical R (or complementary to any closed ideal I of \mathfrak{A} contained in R).

In [2] R. J. Loy and the present author extended these results in the following way to commutative Banach algebras satisfying either of the following weaker generating conditions.

B : sp{x
$$\in \mathfrak{A}^{-1}$$
 : $||x^{n}|| ||x^{-n}|| = o(n)$ }⁻ = \mathfrak{A}
C : sp{x $\in \mathfrak{A}$: $||e^{nx}|| ||e^{-nx}|| = o(n)$ }⁻ = \mathfrak{A}

THEOREM 1. Let \mathfrak{A} be a commutative Banach algebra with identity which satisfies either of the condition B or C. If φ and ψ are continuous homomorphisms of \mathfrak{A} into the commutative Banach algebra \mathfrak{B} such that

 $(\varphi - \psi)(\mathfrak{A}) \subset rad \mathfrak{B}$,

then $\varphi = \psi$.

It follows immediately that if \mathfrak{A} is commutative satisfying B or C, and rad $\mathfrak{A} \equiv \mathbb{R} \neq 0$, then \mathfrak{A} cannot have the strong Wedderburn property, that is, there cannot exist a closed subalgebra \mathfrak{C} of \mathfrak{A} with $\mathfrak{C} \simeq \mathfrak{A}/\mathbb{R}$ and $\mathfrak{A} = \mathfrak{C} \oplus \mathbb{R}$. A similar result holds if I is any closed ideal of \mathfrak{A} contained in \mathbb{R} . On the other hand, if \mathfrak{B} is a commutative Banach algebra which satisfies $\mathfrak{B} = \mathfrak{C} \oplus \mathbb{I}$, where \mathfrak{C} is a closed subalgebra of \mathfrak{B} continuously isomorphic to \mathfrak{A} , and I is a closed ideal of \mathfrak{B}