POWER-BOUNDED ELEMENTS IN A BANACH ALGEBRA AND A THEOREM OF GELFAND

G.R. Allan

1. INTRODUCTION

Most of the unattributed results in §§1–4 are joint work with T.J. Ransford; a fully detailed account, including results not given here, is in [2].

Let A be a (complex) unital Banach algebra and let $x \in A$. We say that:

(i) x is power-bounded (pb) if and only if there is K > 0 such that $||x^n|| \le K$ for all $n \ge 0$;

(ii) x is doubly power-bounded (dpb) if and only if x is invertible and there is K > 0 such that $||x^n|| \le K$ for all $n \in \mathbb{Z}$.

We remark that we may always renorm with an equivalent unital algebra norm so that K = 1.

From the spectral radius formula: if x is pb then $Sp x \subseteq \Delta \equiv \{z \in \mathbb{C} : |z| \leq 1\}$; if x is dpb then $Sp x \subseteq \mathbb{T} \equiv \{z \in \mathbb{C} : |z| = 1\}$.

We shall give a very simple proof of the following result of Katznelson and Tzafriri [10].

THEOREM 1. (Katznelson & Tzafriri) Let A be a complex unital Banach algebra and let $x \in A$ be pb. Then $||x^n(1-x)|| \to 0$ as $n \to \infty$ if (and only if) $(Spx) \cap T \subseteq \{1\}$.

Remarks. (i) The 'only if' is trivial.

(ii) If $(Sp x) \cap \mathbf{T} = \emptyset$, then $x^n \to 0$, since $r_A(x) < 1$, so the only case of interest is that in which $(Spx) \cap \mathbf{T} = \{1\}$.