MONOTONE OPERATORS AND OBSTACLE PROBLEMS

J.H. Michael

1. INTRODUCTION

Let Ω be a bounded open set in \mathbb{R}^n and let ψ be a continuous function on $\partial\Omega$ (the boundary of Ω). Consider first of all the following problem.

Does there exist a continuous function u on the closure $\overline{\Omega}$ of Ω , agreeing with ψ on $\partial\Omega$, C'' on Ω and satisfying the non-linear partial differential equation

(1)
$$\sum_{i=1}^{n} \frac{\partial}{\partial x_i} a_i(x, u(x), Du(x)) - b(x, u(x), Du(x)) = 0$$

for $x \in \Omega$. The a_i and b are given functions.

If the a_i and b are sufficiently smooth and satisfy an ellipticity condition as well as certain growth conditions and if $\partial\Omega$ is sufficiently smooth, then such a function uis known to exist. One way of proving this is to use fixed point theory.

When such a function u exists and ϕ is a suitably smooth function, vanishing on $\partial\Omega$, then repeated integration and integration by parts gives

(2)
$$\sum_{i=1}^{n} \int_{\Omega} a_{i}(x, u, Du) \frac{\partial \phi}{\partial x_{i}} dx + \int_{\Omega} b(x, u, Du) \phi dx = 0.$$

Equation (2) still makes sense when the a_i , b and u are less smooth. u is called a weak solution when (2) holds for all ϕ .

When showing that a weak solution exists (under appropriate conditions on a_i , band $\partial\Omega$), fixed point theory does not seem to work. But a valuable tool is provided by the theory of monotone and pseudo-monotone operators. This theory is based on the following two results in \mathbb{R}^n .

(A) The Brouwer fixed point theorem.

(B) If K is a compact convex, non-empty subset of R^n and $x\in R^n\sim K$, then there is a $y\in K$, such that

$$(u-y) \cdot (y-x) \ge 0$$

for all $u \in K$.