SOLVABILITY OF DIFFERENTIAL OPERATORS ON SEMIRADIAL SEMIDIRECT PRODUCTS

A. H. Dooley

Let $G = N \rtimes K$ be the semidirect product of a simply connected nilpotent Lie group by a compact Lie group. Let \underline{n}_i be the derived series of \underline{n} , defined by $n_0 = n$, $\underline{n}_i = [\underline{n}_{i-1}]$ for $i \ge 1$. We shall say that the semidirect product is **semiradial** if we can write $\underline{n}_i = \underline{n}^i + \underline{n}_{i-1}$ as a K-space, in such a way that the K-invariants in \underline{n}^i form a commutative algebra.

Let P be a bi-K-invariant, left N invariant differential operator on G, and consider the **partial Fourier coefficients** of P, $(P_{\wedge})_{\Lambda \in \widehat{K}}$. These are K-invariant, $\mathcal{B}(\mathcal{H}_{\wedge})$ -valued differential operators on N defined for $\phi \in C^{\infty}(N)$ by

$$(P_{\wedge}\phi)(n) = P(\phi \otimes \wedge).$$

In [2], the following result was proved.

Theorem 1. Let G and P be as above and suppose that Ω is a relatively compact set in G.

Suppose further that for each integer a there is a constant C so that for all $\wedge \in \widehat{K}$

$$\| P_{\wedge} \|' \ge CN(\wedge)^{-a}. \tag{**}$$

¹⁹⁸⁰ Mathematics subject classification (1985 Revision): 22E46