SURFACE MEASURES —

MAXIMAL FUNCTIONS AND FOURIER TRANSFORMS

Michael Cowling and Giancarlo Mauceri

Let S denote a smooth hypersurface in \mathbb{R}^{n+1} with surface measure dS induced by the Lebesgue measure of \mathbb{R}^{n+1} . We fix a smooth nonnegative function w with compact support in \mathbb{R}^{n+1} and consider the finite Borel measure μ with $d\mu = wdS$, which is carried by S. For any function f in the Schwartz space $S(\mathbb{R}^{n+1})$ we denote by $M_t f$ the averages of f over the dilates of S —

$$M_t f(x) = \int_S f(x - ty) \, d\mu(y) \qquad \forall t \in \mathbb{R}^+, \quad \forall x \in \mathbb{R}^{n+1} -$$

and by M_*f the associated maximal function —

$$M_*f(x) = \sup_{t>0} |M_tf(x)| \qquad \forall x \in \mathbb{R}^{n+1}.$$

Our purpose is to determine the range of p's for which an a priori estimate of the form

$$||M_*f||_p \le C||f||_p \qquad \forall f \in \mathcal{S}(\mathbb{R}^{n+1}),$$

holds; this estimate entails that the sublinear operator M_* extends to a bounded operator on the Lebesgue space $L^p(\mathbb{R}^{n+1})$, hereafter abbreviated to L^p . In the last decade, since Stein's work on the "spherical maximal function" [S1], [SW], this problem has attracted considerable attention [B], [CM1], [CM2], [G], [SS1], [SS2]. It turns out that, at least when p < 2, the range of p's for which the maximal operator M_* is bounded on L^p is determined by the decay at infinity of the Fourier transform $\hat{\mu}$ of the measure μ .