A Note on Martingales with respect to Complex Measures

M. G. Cowling, G. I. Gaudry* and T. Gian**

Introduction

Let γ be a rectifiable Jordan curve passing through ∞ , and let z(x) denote its arclength parameterization. Assume that γ is a chord-arc curve: this means that there is a constant such that

$$1 \leq rac{|a-b|}{|\int_a^b z'(x)dx|} = rac{|a-b|}{|z(a)-z(b)|} \leq C_0 < \infty, \ \ orall a, \ b.$$

Let \mathcal{D}_k denote the ring of sets generated by the collection of dyadic intervals of length $2^{-k}, k \in \mathbb{Z}$, where \mathbb{Z} is the set of all integers, and define the "conditional expectation" operator E_k by

$$E_k f(t) = \int_I f(x) z'(x) dx / \int_I z'(x) dx, \ t \in I,$$

where I is a dyadic interval of length 2^{-k} . The operator E_k has a natural extension to \mathcal{D}_k . It may be thought of, in a natural way, as a conditional expectation with respect to the finitely-additive complex measure z'(x)dx. In a recent paper, Coifman, Jones and Semmes [CJS] pointed out that this conditional expectation operator has many of the same properties as the conditional expectation with respect to a positive measure. They outlined a proof of the corresponding Littlewood-Paley theorem which made use of a Carleson measure argument, and used the Littlewood-Paley theorem to give a new proof of the L^2 -boundedness of Cauchy integrals along chord-arc curves.

In this note we establish a general theory of martingales with respect to complex measures. In our case, the complex measures are defined and σ -additive on a σ -algebra

¹⁹⁸⁰ Mathematics Subject Classification (1985 revision). Primary 42B25, 60G42; secondary 42B20, 60G46.

^{*} Research supported by the Australian Research Council

^{**} Research carried out as a National Research Fellow